
Formalising an intermediate language for POSIX shell

Nicolas Jeannerod

Séminaire Gallium, Septembre 18, 2017

Nicolas Jeannerod Séminaire Gallium September 18, 2017 1 / 35

Big picture

Nicolas Jeannerod Séminaire Gallium September 18, 2017 2 / 35

Big picture

Nicolas Jeannerod Séminaire Gallium September 18, 2017 2 / 35

Big picture

Nicolas Jeannerod Séminaire Gallium September 18, 2017 2 / 35

Big picture

Nicolas Jeannerod Séminaire Gallium September 18, 2017 2 / 35

Big picture

Nicolas Jeannerod Séminaire Gallium September 18, 2017 2 / 35

Big picture

Nicolas Jeannerod Séminaire Gallium September 18, 2017 2 / 35

Gallery of horrors in shell Dynamic!

Table of Contents

1. Gallery of horrors in shell
Dynamic!
Expansion
Inconstant semantics
Control flow

2. The CoLiS language
Requirements
Definitions

3. Formalisation
Formulation
Proof

Nicolas Jeannerod Séminaire Gallium September 18, 2017 3 / 35

Gallery of horrors in shell Dynamic!

Execute arbitrary strings

Execute commands from strings:

a=’echo foo’

$a ## prints "foo"

or any code with eval:

eval "if true; then echo foo; fi"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 4 / 35

Gallery of horrors in shell Dynamic!

Execute arbitrary strings

Execute commands from strings:

a=’echo foo’

$a ## prints "foo"

or any code with eval:

eval "if true; then echo foo; fi"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 4 / 35

Gallery of horrors in shell Dynamic!

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## prints "bar"

I tell ya, everything!

f () { echo $a; }

a=foo

a=bar f ## prints "bar"

echo $a ## prints "bar"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 5 / 35

Gallery of horrors in shell Dynamic!

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## prints "bar"

I tell ya, everything!

f () { echo $a; }

a=foo

a=bar f ## prints "bar"

echo $a ## prints "bar"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 5 / 35

Gallery of horrors in shell Dynamic!

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## prints "bar"

I tell ya, everything!

f () { echo $a; }

a=foo

a=bar f ## prints "bar"

echo $a ## prints "bar"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 5 / 35

Gallery of horrors in shell Dynamic!

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## prints "bar"

I tell ya, everything!

f () { echo $a; }

a=foo

a=bar f ## prints "bar"

echo $a ## prints "bar"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 5 / 35

Gallery of horrors in shell Dynamic!

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## prints "bar"

I tell ya, everything!

f () { echo $a; }

a=foo

a=bar f ## prints "bar"

echo $a ## prints "bar"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 5 / 35

Gallery of horrors in shell Dynamic!

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## prints "bar"

I tell ya, everything!

f () { echo $a; }

a=foo

a=bar f ## prints "bar"

echo $a ## prints "bar"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 5 / 35

Gallery of horrors in shell Expansion

Table of Contents

1. Gallery of horrors in shell
Dynamic!
Expansion
Inconstant semantics
Control flow

2. The CoLiS language
Requirements
Definitions

3. Formalisation
Formulation
Proof

Nicolas Jeannerod Séminaire Gallium September 18, 2017 6 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

Parameters (i.e. variables)

Special parameters

“Formatted” parameters

Arithmetic

Globs

Commands

Quotes

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

~/ Pictures ~user/Pictures :~/ Download

Parameters (i.e. variables)

Special parameters

“Formatted” parameters

Arithmetic

Globs

Commands

Quotes

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

Parameters (i.e. variables)

$foo $bar

Special parameters

“Formatted” parameters

Arithmetic

Globs

Commands

Quotes

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

Parameters (i.e. variables)

Special parameters

$@ $* $1, $2, ...

“Formatted” parameters

Arithmetic

Globs

Commands

Quotes

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

Parameters (i.e. variables)

Special parameters

“Formatted” parameters

${foo:-bar} ${foo -baz}

${foo %.*} ${foo##*/}

Arithmetic

Globs

Commands

Quotes

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

Parameters (i.e. variables)

Special parameters

“Formatted” parameters

Arithmetic

$((1 + x + $x))

Globs

Commands

Quotes

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

Parameters (i.e. variables)

Special parameters

“Formatted” parameters

Arithmetic

Globs

/home /[!a]* *.ml *.ml?

Commands

Quotes

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

Parameters (i.e. variables)

Special parameters

“Formatted” parameters

Arithmetic

Globs

Commands

$(echo foo)

‘echo \‘echo foo\‘‘

$(which curl)

Quotes

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

All it can contain

Literals

Tildes

Parameters (i.e. variables)

Special parameters

“Formatted” parameters

Arithmetic

Globs

Commands

Quotes

foo=’my file’

rm $foo ’$foo’ "$foo"

Nicolas Jeannerod Séminaire Gallium September 18, 2017 7 / 35

Gallery of horrors in shell Expansion

Dirty uses

Abused to represent both strings and lists of strings:

path=’/home’

path="$path/nicolas" ## "/home/nicolas"

args=’-l -a’

args="$args -h" ## ["-l"; "-a"; "-h"]

ls $args $path

Or lists separated by something else than space:

PATH=’/usr/local/bin:/usr/bin:/bin’

IFS=:

for dir in $PATH; do

echo $dir

done

Nicolas Jeannerod Séminaire Gallium September 18, 2017 8 / 35

Gallery of horrors in shell Expansion

Dirty uses

Abused to represent both strings and lists of strings:

path=’/home’

path="$path/nicolas" ## "/home/nicolas"

args=’-l -a’

args="$args -h" ## ["-l"; "-a"; "-h"]

ls $args $path

Or lists separated by something else than space:

PATH=’/usr/local/bin:/usr/bin:/bin’

IFS=:

for dir in $PATH; do

echo $dir

done

Nicolas Jeannerod Séminaire Gallium September 18, 2017 8 / 35

Gallery of horrors in shell Expansion

Dirty uses

Abused to represent both strings and lists of strings:

path=’/home’

path="$path/nicolas" ## "/home/nicolas"

args=’-l -a’

args="$args -h" ## ["-l"; "-a"; "-h"]

ls $args $path

Or lists separated by something else than space:

PATH=’/usr/local/bin:/usr/bin:/bin’

IFS=:

for dir in $PATH; do

echo $dir

done

Nicolas Jeannerod Séminaire Gallium September 18, 2017 8 / 35

Gallery of horrors in shell Expansion

Dirty uses

Abused to represent both strings and lists of strings:

path=’/home’

path="$path/nicolas" ## "/home/nicolas"

args=’-l -a’

args="$args -h" ## ["-l"; "-a"; "-h"]

ls $args $path

Or lists separated by something else than space:

PATH=’/usr/local/bin:/usr/bin:/bin’

IFS=:

for dir in $PATH; do

echo $dir

done

Nicolas Jeannerod Séminaire Gallium September 18, 2017 8 / 35

Gallery of horrors in shell Expansion

Dirty uses

Abused to represent both strings and lists of strings:

path=’/home’

path="$path/nicolas" ## "/home/nicolas"

args=’-l -a’

args="$args -h" ## ["-l"; "-a"; "-h"]

ls $args $path

Or lists separated by something else than space:

PATH=’/usr/local/bin:/usr/bin:/bin’

IFS=:

for dir in $PATH; do

echo $dir

done

Nicolas Jeannerod Séminaire Gallium September 18, 2017 8 / 35

Gallery of horrors in shell Expansion

Dirty uses

Abused to represent both strings and lists of strings:

path=’/home’

path="$path/nicolas" ## "/home/nicolas"

args=’-l -a’

args="$args -h" ## ["-l"; "-a"; "-h"]

ls $args $path

Or lists separated by something else than space:

PATH=’/usr/local/bin:/usr/bin:/bin’

IFS=:

for dir in $PATH; do

echo $dir

done

Nicolas Jeannerod Séminaire Gallium September 18, 2017 8 / 35

Gallery of horrors in shell Inconstant semantics

Table of Contents

1. Gallery of horrors in shell
Dynamic!
Expansion
Inconstant semantics
Control flow

2. The CoLiS language
Requirements
Definitions

3. Formalisation
Formulation
Proof

Nicolas Jeannerod Séminaire Gallium September 18, 2017 9 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: IFS

file=’git -sucks ’

rm -r $file ## deletes "git -sucks"

IFS=-

rm -r $file ## deletes "git" and "sucks"

Here is what happens:

1 The parsing gives us ["rm"; "-r"; "$file"];

2 We apply parameter expansion and get ["rm"; "-r"; "git-sucks"];

3 We apply field splitting, but only where we just applied the
parameter expansion: [["rm"]; ["-r"]; ["git"; "sucks"]];

4 We flatten everything: ["rm"; "-r"; "git"; "sucks"];

5 We evaluate that so-called simple command.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 10 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: IFS

file=’git -sucks ’

rm -r $file ## deletes "git -sucks"

IFS=-

rm -r $file ## deletes "git" and "sucks"

Here is what happens:

1 The parsing gives us ["rm"; "-r"; "$file"];

2 We apply parameter expansion and get ["rm"; "-r"; "git-sucks"];

3 We apply field splitting, but only where we just applied the
parameter expansion: [["rm"]; ["-r"]; ["git"; "sucks"]];

4 We flatten everything: ["rm"; "-r"; "git"; "sucks"];

5 We evaluate that so-called simple command.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 10 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: IFS

file=’git -sucks ’

rm -r $file ## deletes "git -sucks"

IFS=-

rm -r $file ## deletes "git" and "sucks"

Here is what happens:

1 The parsing gives us ["rm"; "-r"; "$file"];

2 We apply parameter expansion and get ["rm"; "-r"; "git-sucks"];

3 We apply field splitting, but only where we just applied the
parameter expansion: [["rm"]; ["-r"]; ["git"; "sucks"]];

4 We flatten everything: ["rm"; "-r"; "git"; "sucks"];

5 We evaluate that so-called simple command.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 10 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: IFS

file=’git -sucks ’

rm -r $file ## deletes "git -sucks"

IFS=-

rm -r $file ## deletes "git" and "sucks"

Here is what happens:

1 The parsing gives us ["rm"; "-r"; "$file"];

2 We apply parameter expansion and get ["rm"; "-r"; "git-sucks"];

3 We apply field splitting, but only where we just applied the
parameter expansion: [["rm"]; ["-r"]; ["git"; "sucks"]];

4 We flatten everything: ["rm"; "-r"; "git"; "sucks"];

5 We evaluate that so-called simple command.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 10 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: IFS

file=’git -sucks ’

rm -r $file ## deletes "git -sucks"

IFS=-

rm -r $file ## deletes "git" and "sucks"

Here is what happens:

1 The parsing gives us ["rm"; "-r"; "$file"];

2 We apply parameter expansion and get ["rm"; "-r"; "git-sucks"];

3 We apply field splitting, but only where we just applied the
parameter expansion: [["rm"]; ["-r"]; ["git"; "sucks"]];

4 We flatten everything: ["rm"; "-r"; "git"; "sucks"];

5 We evaluate that so-called simple command.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 10 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: IFS

file=’git -sucks ’

rm -r $file ## deletes "git -sucks"

IFS=-

rm -r $file ## deletes "git" and "sucks"

Here is what happens:

1 The parsing gives us ["rm"; "-r"; "$file"];

2 We apply parameter expansion and get ["rm"; "-r"; "git-sucks"];

3 We apply field splitting, but only where we just applied the
parameter expansion: [["rm"]; ["-r"]; ["git"; "sucks"]];

4 We flatten everything: ["rm"; "-r"; "git"; "sucks"];

5 We evaluate that so-called simple command.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 10 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: set

With set:

-a Every assignment becomes an export;

-C > no longer overwrite existing files. >| still does;

-e The shell shall exit immediately when a command fails, when this
failure is not caught;

-f Disables pathname expansion;

-u The shell shall fail when expanding parameters that are unset.

It makes you wonder why most of these options are disabled by default.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 11 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: set

With set:

-a Every assignment becomes an export;

-C > no longer overwrite existing files. >| still does;

echo foo > file

set -C

echo bar > file ## fails

echo baz >| file ## succeeds

-e The shell shall exit immediately when a command fails, when this
failure is not caught;

-f Disables pathname expansion;

-u The shell shall fail when expanding parameters that are unset.

It makes you wonder why most of these options are disabled by default.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 11 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: set

With set:

-a Every assignment becomes an export;

-C > no longer overwrite existing files. >| still does;

-e The shell shall exit immediately when a command fails, when this
failure is not caught;

set -e

! true ; echo foo ## prints "foo"

false ; echo foo ## exists

-f Disables pathname expansion;

-u The shell shall fail when expanding parameters that are unset.

It makes you wonder why most of these options are disabled by default.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 11 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: set

With set:

-a Every assignment becomes an export;

-C > no longer overwrite existing files. >| still does;

-e The shell shall exit immediately when a command fails, when this
failure is not caught;

-f Disables pathname expansion;

echo * ## prints the files in $PWD

set -f

echo * ## prints "*"

-u The shell shall fail when expanding parameters that are unset.

It makes you wonder why most of these options are disabled by default.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 11 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: set

With set:

-a Every assignment becomes an export;

-C > no longer overwrite existing files. >| still does;

-e The shell shall exit immediately when a command fails, when this
failure is not caught;

-f Disables pathname expansion;

-u The shell shall fail when expanding parameters that are unset.

rm -rf "$dir"/ ## deletes everything

set -u

rm -rf "$dir"/ ## fails

It makes you wonder why most of these options are disabled by default.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 11 / 35

Gallery of horrors in shell Inconstant semantics

Dynamic changes in the semantics: set

With set:

-a Every assignment becomes an export;

-C > no longer overwrite existing files. >| still does;

-e The shell shall exit immediately when a command fails, when this
failure is not caught;

-f Disables pathname expansion;

-u The shell shall fail when expanding parameters that are unset.

It makes you wonder why most of these options are disabled by default.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 11 / 35

Gallery of horrors in shell Control flow

Table of Contents

1. Gallery of horrors in shell
Dynamic!
Expansion
Inconstant semantics
Control flow

2. The CoLiS language
Requirements
Definitions

3. Formalisation
Formulation
Proof

Nicolas Jeannerod Séminaire Gallium September 18, 2017 12 / 35

Gallery of horrors in shell Control flow

Behaviours

Let us play with exit:

exit | echo ’foo’ ## prints "foo"

exit || echo ’foo’ ## exits

exit & echo ’foo’ ## prints "foo"

exit && echo ’foo’ ## exits

echo ’foo’ | exit ## does nothing

echo ’foo’ || exit ## prints "foo"

echo ’foo’ & exit ## prints "foo" and exits

echo ’foo’ && exit ## prints "foo" and exits

Nicolas Jeannerod Séminaire Gallium September 18, 2017 13 / 35

Gallery of horrors in shell Control flow

Behaviours

Let us play with exit:

exit | echo ’foo’ ## prints "foo"

exit || echo ’foo’ ## exits

exit & echo ’foo’ ## prints "foo"

exit && echo ’foo’ ## exits

echo ’foo’ | exit ## does nothing

echo ’foo’ || exit ## prints "foo"

echo ’foo’ & exit ## prints "foo" and exits

echo ’foo’ && exit ## prints "foo" and exits

Nicolas Jeannerod Séminaire Gallium September 18, 2017 13 / 35

Gallery of horrors in shell Control flow

Behaviours

Let us play with exit:

exit | echo ’foo’ ## prints "foo"

exit || echo ’foo’ ## exits

exit & echo ’foo’ ## prints "foo"

exit && echo ’foo’ ## exits

echo ’foo’ | exit ## does nothing

echo ’foo’ || exit ## prints "foo"

echo ’foo’ & exit ## prints "foo" and exits

echo ’foo’ && exit ## prints "foo" and exits

Nicolas Jeannerod Séminaire Gallium September 18, 2017 13 / 35

Gallery of horrors in shell Control flow

Behaviours

Let us play with exit:

exit | echo ’foo’ ## prints "foo"

exit || echo ’foo’ ## exits

exit & echo ’foo’ ## prints "foo"

exit && echo ’foo’ ## exits

echo ’foo’ | exit ## does nothing

echo ’foo’ || exit ## prints "foo"

echo ’foo’ & exit ## prints "foo" and exits

echo ’foo’ && exit ## prints "foo" and exits

Nicolas Jeannerod Séminaire Gallium September 18, 2017 13 / 35

Gallery of horrors in shell Control flow

The incredible story of set -e

When this option is on, when any command fails, the shell
immediately shall exit, as if by executing the exit special built-in
utility with no arguments, with the following exceptions: [...]

Snippet 1:

false; echo ’foo’

Snippet 2:

{ false; echo ’foo’; } && echo ’bar’

Snippet 3:

{ false; echo ’foo’; } | echo ’bar’

Nicolas Jeannerod Séminaire Gallium September 18, 2017 14 / 35

Gallery of horrors in shell Control flow

The incredible story of set -e

When this option is on, when any command fails, the shell
immediately shall exit, as if by executing the exit special built-in
utility with no arguments, with the following exceptions: [...]

Snippet 1:

false; echo ’foo’

Snippet 2:

{ false; echo ’foo’; } && echo ’bar’

Snippet 3:

{ false; echo ’foo’; } | echo ’bar’

Nicolas Jeannerod Séminaire Gallium September 18, 2017 14 / 35

Gallery of horrors in shell Control flow

The incredible story of set -e

When this option is on, when any command fails, the shell
immediately shall exit, as if by executing the exit special built-in
utility with no arguments, with the following exceptions: [...]

Snippet 1 (exits):

false; echo ’foo’

Snippet 2:

{ false; echo ’foo’; } && echo ’bar’

Snippet 3:

{ false; echo ’foo’; } | echo ’bar’

Nicolas Jeannerod Séminaire Gallium September 18, 2017 14 / 35

Gallery of horrors in shell Control flow

The incredible story of set -e

When this option is on, when any command fails, the shell
immediately shall exit, as if by executing the exit special built-in
utility with no arguments, with the following exceptions: [...]

Snippet 1 (exits):

false; echo ’foo’

Snippet 2:

{ false; echo ’foo’; } && echo ’bar’

Snippet 3:

{ false; echo ’foo’; } | echo ’bar’

Nicolas Jeannerod Séminaire Gallium September 18, 2017 14 / 35

Gallery of horrors in shell Control flow

The incredible story of set -e

When this option is on, when any command fails, the shell
immediately shall exit, as if by executing the exit special built-in
utility with no arguments, with the following exceptions: [...]

Snippet 1 (exits):

false; echo ’foo’

Snippet 2 (prints “foo bar”):

{ false; echo ’foo’; } && echo ’bar’

Snippet 3:

{ false; echo ’foo’; } | echo ’bar’

Nicolas Jeannerod Séminaire Gallium September 18, 2017 14 / 35

Gallery of horrors in shell Control flow

The incredible story of set -e

When this option is on, when any command fails, the shell
immediately shall exit, as if by executing the exit special built-in
utility with no arguments, with the following exceptions: [...]

Snippet 1 (exits):

false; echo ’foo’

Snippet 2 (prints “foo bar”):

{ false; echo ’foo’; } && echo ’bar’

Snippet 3:

{ false; echo ’foo’; } | echo ’bar’

Nicolas Jeannerod Séminaire Gallium September 18, 2017 14 / 35

Gallery of horrors in shell Control flow

The incredible story of set -e

When this option is on, when any command fails, the shell
immediately shall exit, as if by executing the exit special built-in
utility with no arguments, with the following exceptions: [...]

Snippet 1 (exits):

false; echo ’foo’

Snippet 2 (prints “foo bar”):

{ false; echo ’foo’; } && echo ’bar’

Snippet 3 (prints “bar”):

{ false; echo ’foo’; } | echo ’bar’

Nicolas Jeannerod Séminaire Gallium September 18, 2017 14 / 35

The CoLiS language Requirements

Table of Contents

1. Gallery of horrors in shell
Dynamic!
Expansion
Inconstant semantics
Control flow

2. The CoLiS language
Requirements
Definitions

3. Formalisation
Formulation
Proof

Nicolas Jeannerod Séminaire Gallium September 18, 2017 15 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Requirements

Requirements

Intermediate language for a subset of shell;

Not a replacement of shell;

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to shell:

We must be convinced that it shares the same semantics as the shell,
Target of an automated translation from shell.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 16 / 35

The CoLiS language Definitions

Table of Contents

1. Gallery of horrors in shell
Dynamic!
Expansion
Inconstant semantics
Control flow

2. The CoLiS language
Requirements
Definitions

3. Formalisation
Formulation
Proof

Nicolas Jeannerod Séminaire Gallium September 18, 2017 17 / 35

The CoLiS language Definitions

Syntax

Programs p ::= vdecl∗ pdecl∗ program t
Variables decl. vdecl ::= varstring xs | varlist xl
Procedures decl. pdecl ::= proc c is t

Terms t ::= true | false | fatal
| return t | exit t
| xs := s | xl := l
| t ; t | if t then t else t
| for xs in l do t | while t do t
| process t | pipe t into t
| call l | shift

Nicolas Jeannerod Séminaire Gallium September 18, 2017 18 / 35

The CoLiS language Definitions

Syntax

Programs p ::= vdecl∗ pdecl∗ program t
Variables decl. vdecl ::= varstring xs | varlist xl
Procedures decl. pdecl ::= proc c is t

Terms t ::= true | false | fatal
| return t | exit t
| xs := s | xl := l
| t ; t | if t then t else t
| for xs in l do t | while t do t
| process t | pipe t into t
| call l | shift

Nicolas Jeannerod Séminaire Gallium September 18, 2017 18 / 35

The CoLiS language Definitions

Syntax

Programs p ::= vdecl∗ pdecl∗ program t
Variables decl. vdecl ::= varstring xs | varlist xl
Procedures decl. pdecl ::= proc c is t

Terms t ::= true | false | fatal
| return t | exit t
| xs := s | xl := l
| t ; t | if t then t else t
| for xs in l do t | while t do t
| process t | pipe t into t
| call l | shift

Nicolas Jeannerod Séminaire Gallium September 18, 2017 18 / 35

The CoLiS language Definitions

Syntax

Programs p ::= vdecl∗ pdecl∗ program t
Variables decl. vdecl ::= varstring xs | varlist xl
Procedures decl. pdecl ::= proc c is t

Terms t ::= true | false | fatal
| return t | exit t
| xs := s | xl := l
| t ; t | if t then t else t
| for xs in l do t | while t do t
| process t | pipe t into t
| call l | shift

Nicolas Jeannerod Séminaire Gallium September 18, 2017 18 / 35

The CoLiS language Definitions

Syntax

Terms t ::= true | false | fatal
| return t | exit t
| xs := s | xl := l
| t ; t | if t then t else t
| for xs in l do t | while t do t
| process t | pipe t into t
| call l | shift

String expressions s ::= nils | fs :: s
String fragments fs ::= σ | xs | n | t

List expressions l ::= nill | fl :: l
List fragments fl ::= s | split s | xl

Nicolas Jeannerod Séminaire Gallium September 18, 2017 18 / 35

The CoLiS language Definitions

Syntax

Terms t ::= true | false | fatal
| return t | exit t
| xs := s | xl := l
| t ; t | if t then t else t
| for xs in l do t | while t do t
| process t | pipe t into t
| call l | shift

String expressions s ::= nils | fs :: s
String fragments fs ::= σ | xs | n | t

List expressions l ::= nill | fl :: l
List fragments fl ::= s | split s | xl

Nicolas Jeannerod Séminaire Gallium September 18, 2017 18 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic judgements

t/Γ ⇓ σ ? b/Γ′

A context Γ contains:

flags?

a file system,

the standard input,

the arguments line,

environments for string and list variables,

an environment for procedures.

A behaviour b can be
True, False, Fatal, Return (True|False) or Exit (True|False).

Nicolas Jeannerod Séminaire Gallium September 18, 2017 19 / 35

The CoLiS language Definitions

Semantic rules – Branching

Branching-True
t1/Γ ⇓ σ1 ? b1/Γ1

b1 = True t2/Γ1
⇓ σ2 ? b2/Γ2

(if t1 then t2 else t3)/Γ ⇓ σ1σ2 ? b2/Γ2

Branching-False
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {False,Fatal} t3/Γ1
⇓ σ3 ? b3/Γ3

(if t1 then t2 else t3)/Γ ⇓ σ1σ3 ? b3/Γ3

Branching-Exception
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {Return ,Exit }
(if t1 then t2 else t3)/Γ ⇓ σ1 ? b1/Γ1

Nicolas Jeannerod Séminaire Gallium September 18, 2017 20 / 35

The CoLiS language Definitions

Semantic rules – Branching

Branching-True
t1/Γ ⇓ σ1 ? b1/Γ1

b1 = True t2/Γ1
⇓ σ2 ? b2/Γ2

(if t1 then t2 else t3)/Γ ⇓ σ1σ2 ? b2/Γ2

Branching-False
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {False,Fatal} t3/Γ1
⇓ σ3 ? b3/Γ3

(if t1 then t2 else t3)/Γ ⇓ σ1σ3 ? b3/Γ3

Branching-Exception
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {Return ,Exit }
(if t1 then t2 else t3)/Γ ⇓ σ1 ? b1/Γ1

Nicolas Jeannerod Séminaire Gallium September 18, 2017 20 / 35

The CoLiS language Definitions

Semantic rules – Branching

Branching-True
t1/Γ ⇓ σ1 ? b1/Γ1

b1 = True t2/Γ1
⇓ σ2 ? b2/Γ2

(if t1 then t2 else t3)/Γ ⇓ σ1σ2 ? b2/Γ2

Branching-False
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {False,Fatal} t3/Γ1
⇓ σ3 ? b3/Γ3

(if t1 then t2 else t3)/Γ ⇓ σ1σ3 ? b3/Γ3

Branching-Exception
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {Return ,Exit }
(if t1 then t2 else t3)/Γ ⇓ σ1 ? b1/Γ1

Nicolas Jeannerod Séminaire Gallium September 18, 2017 20 / 35

Formalisation Formulation

Table of Contents

1. Gallery of horrors in shell
Dynamic!
Expansion
Inconstant semantics
Control flow

2. The CoLiS language
Requirements
Definitions

3. Formalisation
Formulation
Proof

Nicolas Jeannerod Séminaire Gallium September 18, 2017 21 / 35

Formalisation Formulation

Formalisation

Formalised in the proof environment Why3:

The syntax becomes an algebraic data type,
The semantics become an inductive predicate;

Interpreter proven sound and complete:

Written in a “natural way”,
Helps detecting potential mistakes in the semantics,
More easily readable than the semantics,
Allows us to validate the translation by testing.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 22 / 35

Formalisation Formulation

Formalisation

Formalised in the proof environment Why3:

The syntax becomes an algebraic data type,

type term = TTrue | TFalse | TFatal

| TReturn term | TExit term

| TSeq term term | TIf term term term

| ...

The semantics become an inductive predicate;

Interpreter proven sound and complete:

Written in a “natural way”,
Helps detecting potential mistakes in the semantics,
More easily readable than the semantics,
Allows us to validate the translation by testing.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 22 / 35

Formalisation Formulation

Formalisation

Formalised in the proof environment Why3:

The syntax becomes an algebraic data type,
The semantics become an inductive predicate;

inductive eval_term term context

string behaviour context =

| EvalT_Seq_Normal : forall t1 Γ σ1 b1 Γ1 t2 σ2 b2 Γ2.

eval_term t1 Γ σ1 (BNormal b1) Γ1 ->

eval_term t2 Γ1 σ2 b2 Γ2 ->

eval_term (TSeq t1 t2) Γ (concat σ1 σ2) b2 Γ2

Interpreter proven sound and complete:

Written in a “natural way”,
Helps detecting potential mistakes in the semantics,
More easily readable than the semantics,
Allows us to validate the translation by testing.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 22 / 35

Formalisation Formulation

Formalisation

Formalised in the proof environment Why3:

The syntax becomes an algebraic data type,
The semantics become an inductive predicate;

Interpreter proven sound and complete:

Written in a “natural way”,
Helps detecting potential mistakes in the semantics,
More easily readable than the semantics,
Allows us to validate the translation by testing.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 22 / 35

Formalisation Formulation

Formalisation

Formalised in the proof environment Why3:

The syntax becomes an algebraic data type,
The semantics become an inductive predicate;

Interpreter proven sound and complete:

Written in a “natural way”,

exception EFatal context

exception EReturn (bool , context)

exception EExit (bool , context)

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

Helps detecting potential mistakes in the semantics,
More easily readable than the semantics,
Allows us to validate the translation by testing.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 22 / 35

Formalisation Formulation

Formalisation

Formalised in the proof environment Why3:

The syntax becomes an algebraic data type,
The semantics become an inductive predicate;

Interpreter proven sound and complete:

Written in a “natural way”,

exception EFatal context

exception EReturn (bool , context)

exception EExit (bool , context)

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

Helps detecting potential mistakes in the semantics,
More easily readable than the semantics,
Allows us to validate the translation by testing.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 22 / 35

Formalisation Formulation

Formalisation

Formalised in the proof environment Why3:

The syntax becomes an algebraic data type,
The semantics become an inductive predicate;

Interpreter proven sound and complete:

Written in a “natural way”,
Helps detecting potential mistakes in the semantics,
More easily readable than the semantics,

| TIf t1 t2 t3 ->

let (b1 , Γ1) =

try interp_term t1 Γ stdout

with EFatal Γ1 -> (false , Γ1) end

in

interp_term (if b1 then t2 else t3) Γ1 stdout

Allows us to validate the translation by testing.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 22 / 35

Formalisation Formulation

Formalisation

Formalised in the proof environment Why3:

The syntax becomes an algebraic data type,
The semantics become an inductive predicate;

Interpreter proven sound and complete:

Written in a “natural way”,
Helps detecting potential mistakes in the semantics,
More easily readable than the semantics,
Allows us to validate the translation by testing.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 22 / 35

Formalisation Formulation

Soundness of the interpreter

We write t/Γ 7→ σ ? b/Γ′ for: “on the input consisting of t, Γ and a
reference, the interpreter writes σ at the end of that reference and
terminates:

normally and outputs (b, Γ′);

with an exception corresponding to the behaviour b that carries Γ′.”

Theorem (Soundness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ 7→ σ ? b/Γ′

then
t/Γ ⇓ σ ? b/Γ′

Nicolas Jeannerod Séminaire Gallium September 18, 2017 23 / 35

Formalisation Formulation

Soundness of the interpreter

We write t/Γ 7→ σ ? b/Γ′ for: “on the input consisting of t, Γ and a
reference, the interpreter writes σ at the end of that reference and
terminates:

normally and outputs (b, Γ′);

with an exception corresponding to the behaviour b that carries Γ′.”

Theorem (Soundness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ 7→ σ ? b/Γ′

then
t/Γ ⇓ σ ? b/Γ′

Nicolas Jeannerod Séminaire Gallium September 18, 2017 23 / 35

Formalisation Formulation

Completeness of the interpreter

We write t/Γ 7→ σ ? b/Γ′ for: “on the input consisting of t, Γ and a
reference, the interpreter writes σ at the end of that reference and
terminates:

normally and outputs (b, Γ′);

with an exception corresponding to the behaviour b that carries Γ′.”

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

Nicolas Jeannerod Séminaire Gallium September 18, 2017 23 / 35

Formalisation Formulation

Soundness of the interpreter in Why3

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

diverges

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

raises { EFatal Γ’ -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ BFatal Γ’ }

raises { EReturn (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BReturn b) Γ’ }

...

Nicolas Jeannerod Séminaire Gallium September 18, 2017 24 / 35

Formalisation Formulation

Soundness of the interpreter in Why3

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

diverges

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

raises { EFatal Γ’ -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ BFatal Γ’ }

raises { EReturn (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BReturn b) Γ’ }

...

Nicolas Jeannerod Séminaire Gallium September 18, 2017 24 / 35

Formalisation Formulation

Completeness of the interpreter in Why3

lemma functionality: forall t Γ σ1 σ2 b1 b2 Γ1 Γ2.

eval_term t Γ σ1 b1 Γ1 ->

eval_term t Γ σ2 b2 Γ2 ->

σ1 = σ2 /\ b1 = b2 /\ Γ1 = Γ2

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

requires { exists σ b Γ’. eval_term t Γ σ b Γ’ }

variant { ??? }

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

Nicolas Jeannerod Séminaire Gallium September 18, 2017 25 / 35

Formalisation Formulation

Completeness of the interpreter in Why3

lemma functionality: forall t Γ σ1 σ2 b1 b2 Γ1 Γ2.

eval_term t Γ σ1 b1 Γ1 ->

eval_term t Γ σ2 b2 Γ2 ->

σ1 = σ2 /\ b1 = b2 /\ Γ1 = Γ2

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

requires { exists σ b Γ’. eval_term t Γ σ b Γ’ }

variant { ??? }

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

Nicolas Jeannerod Séminaire Gallium September 18, 2017 25 / 35

Formalisation Formulation

Completeness of the interpreter in Why3

lemma functionality: forall t Γ σ1 σ2 b1 b2 Γ1 Γ2.

eval_term t Γ σ1 b1 Γ1 ->

eval_term t Γ σ2 b2 Γ2 ->

σ1 = σ2 /\ b1 = b2 /\ Γ1 = Γ2

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

requires { exists σ b Γ’. eval_term t Γ σ b Γ’ }

variant { ??? }

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

Nicolas Jeannerod Séminaire Gallium September 18, 2017 25 / 35

Formalisation Formulation

Completeness of the interpreter in Why3

lemma functionality: forall t Γ σ1 σ2 b1 b2 Γ1 Γ2.

eval_term t Γ σ1 b1 Γ1 ->

eval_term t Γ σ2 b2 Γ2 ->

σ1 = σ2 /\ b1 = b2 /\ Γ1 = Γ2

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

requires { exists σ b Γ’. eval_term t Γ σ b Γ’ }

variant { ??? }

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

Nicolas Jeannerod Séminaire Gallium September 18, 2017 25 / 35

Formalisation Proof

Table of Contents

1. Gallery of horrors in shell
Dynamic!
Expansion
Inconstant semantics
Control flow

2. The CoLiS language
Requirements
Definitions

3. Formalisation
Formulation
Proof

Nicolas Jeannerod Séminaire Gallium September 18, 2017 26 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

We cannot provide a witness as a return value here,
because of exceptions,
We (c|sh)ould change it to something more structured.
We decided to use superposition provers.

We need a variant:

The term?
The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

We cannot provide a witness as a return value here,
because of exceptions,
We (c|sh)ould change it to something more structured.
We decided to use superposition provers.

We need a variant:

The term?
The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

We cannot provide a witness as a return value here,
because of exceptions,
We (c|sh)ould change it to something more structured.
We decided to use superposition provers.

We need a variant:

The term?
The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

We cannot provide a witness as a return value here,
because of exceptions,
We (c|sh)ould change it to something more structured.
We decided to use superposition provers.

We need a variant:

The term?
The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

We cannot provide a witness as a return value here,
because of exceptions,
We (c|sh)ould change it to something more structured.
We decided to use superposition provers.

We need a variant:

The term?
The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term?
The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term?
The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.

t1/Γ ⇓ σ1 ? b1/Γ1
b1 = True

t2/Γ ⇓ σ2 ? b2/Γ2
b2 ∈ {True,False}

(while t1 do t2)/Γ2
⇓ σ3 ? b3/Γ3

(while t1 do t2)/Γ ⇓ σ1σ2σ3 ? b3/Γ3

The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis?
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis?

True, but we cannot manipulate them in Why3.

The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis? True, but no.
The height of the derivation tree?
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis? True, but no.
The height of the derivation tree? Err... no.

Superposition provers are bad with arithmetic, and we need the
maximum function and inequalities.
Given the height of a derivation tree, we cannot deduce the heights of
the premises (only an upper bound).

The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis? True, but no.
The height of the derivation tree? Err... no.

Superposition provers are bad with arithmetic, and we need the
maximum function and inequalities.
Given the height of a derivation tree, we cannot deduce the heights of
the premises (only an upper bound).

The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis? True, but no.
The height of the derivation tree? Err... no.
The size of the derivation tree?
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis? True, but no.
The height of the derivation tree? Err... no.
The size of the derivation tree? Err... no.

Superposition provers are bad with arithmetic, and we need addition
and substraction.
Given the size of a derivation tree, we cannot deduce the size of the
premises.

What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis? True, but no.
The height of the derivation tree? Err... no.
The size of the derivation tree? Err... no.

Superposition provers are bad with arithmetic, and we need addition
and substraction.
Given the size of a derivation tree, we cannot deduce the size of the
premises.

What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Why it is hard

stdout is a reference.

We need a variant:

The term? No.
The derivation tree of the hypothesis? True, but no.
The height of the derivation tree? Err... no.
The size of the derivation tree? Err... no.
What then?

Nicolas Jeannerod Séminaire Gallium September 18, 2017 27 / 35

Formalisation Proof

Skeletons

We add a skeleton type:

type skeleton =

| S0

| S1 skeleton

| S2 skeleton skeleton

| S3 skeleton skeleton skeleton

It represents the “shape” of the proof.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 28 / 35

Formalisation Proof

Skeletons

We add a skeleton type:

type skeleton =

| S0

| S1 skeleton

| S2 skeleton skeleton

| S3 skeleton skeleton skeleton

It represents the “shape” of the proof.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 28 / 35

Formalisation Proof

Skeletons

We add a skeleton type:

type skeleton =

| S0

| S1 skeleton

| S2 skeleton skeleton

| S3 skeleton skeleton skeleton

It represents the “shape” of the proof.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 28 / 35

Formalisation Proof

Put them everywhere – In the predicate

inductive eval_term term context

string behaviour context skeleton =

| EvalT_Seq_Normal : forall t1 Γ σ1 b1 Γ1 t2 σ2 b2 Γ2 sk1 sk2.

eval_term t1 Γ σ1 (BNormal b1) Γ1 sk1 ->

eval_term t2 Γ1 σ2 b2 Γ2 sk2 ->

eval_term (TSeq t1 t2) Γ (concat σ1 σ2) b2 Γ2 (S2 sk1 sk2)

| EvalT_Seq_Error : forall t1 Γ σ1 b1 Γ1 t2 sk.

eval_term t1 Γ σ1 b1 Γ1 sk ->

(match b1 with BNormal _ -> false | _ -> true end) ->

eval_term (TSeq t1 t2) Γ σ1 b1 Γ1 (S1 sk)

Nicolas Jeannerod Séminaire Gallium September 18, 2017 29 / 35

Formalisation Proof

Put them everywhere – In the contract

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) (ghost sk: skeleton)

: (bool , context)

requires { exists s b g’. eval_term t g s b g’ sk }

variant { sk }

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ sk }

Nicolas Jeannerod Séminaire Gallium September 18, 2017 30 / 35

Formalisation Proof

Define some helpers

let ghost skeleton12 (sk: skeleton)

requires { match sk with S1 _ | S2 _ _ -> true | _ -> false end }

ensures { match sk with S1 sk1 | S2 sk1 _ -> result = sk1 | _ -> false end }

= match sk with S1 sk1 | S2 sk1 _ -> sk1 | _ -> absurd end

The following:

let ghost sk1 = skeleton12 sk in

reads: “We know that sk can only have one or two premises and we name
the first one sk1.”

Nicolas Jeannerod Séminaire Gallium September 18, 2017 31 / 35

Formalisation Proof

Define some helpers

let ghost skeleton12 (sk: skeleton)

requires { match sk with S1 _ | S2 _ _ -> true | _ -> false end }

ensures { match sk with S1 sk1 | S2 sk1 _ -> result = sk1 | _ -> false end }

= match sk with S1 sk1 | S2 sk1 _ -> sk1 | _ -> absurd end

The following:

let ghost sk1 = skeleton12 sk in

reads: “We know that sk can only have one or two premises and we name
the first one sk1.”

Nicolas Jeannerod Séminaire Gallium September 18, 2017 31 / 35

Formalisation Proof

Put them everywhere – In the code

| TSeq t1 t2 ->

let ghost sk1 = skeleton12 sk in

let (_, Γ1) = interp_term t1 Γ stdout sk1 in

let ghost (_, sk2) = skeleton2 sk in

interp_term t2 Γ1 stdout sk2

| TIf t1 t2 t3 ->

let (b1, Γ1) =

try

let ghost sk1 = skeleton12 sk in

interp_term t1 Γ stdout sk1

with

EFatal Γ’ -> (false , Γ’)
end

in

let ghost (_, sk2) = skeleton2 sk in

interp_term (if b1 then t2 else t3) Γ1 stdout sk2

Nicolas Jeannerod Séminaire Gallium September 18, 2017 32 / 35

Formalisation Proof

Put them everywhere – In the code

| TSeq t1 t2 ->

let ghost sk1 = skeleton12 sk in

let (_, Γ1) = interp_term t1 Γ stdout sk1 in

let ghost (_, sk2) = skeleton2 sk in

interp_term t2 Γ1 stdout sk2

| TIf t1 t2 t3 ->

let (b1, Γ1) =

try

let ghost sk1 = skeleton12 sk in

interp_term t1 Γ stdout sk1

with

EFatal Γ’ -> (false , Γ’)
end

in

let ghost (_, sk2) = skeleton2 sk in

interp_term (if b1 then t2 else t3) Γ1 stdout sk2

Nicolas Jeannerod Séminaire Gallium September 18, 2017 32 / 35

Formalisation Proof

And it’s all green!

Soundness Completeness

Proof obligations 117 233

Time (seconds) 190 510

Nicolas Jeannerod Séminaire Gallium September 18, 2017 33 / 35

Formalisation Proof

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types;

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 34 / 35

Formalisation Proof

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types;

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 34 / 35

Formalisation Proof

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types;

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 34 / 35

Formalisation Proof

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types;

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 34 / 35

Formalisation Proof

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types;

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod Séminaire Gallium September 18, 2017 34 / 35

Thank you for your attention!

Questions? Comments? Suggestions?

Claude Marché, Nicolas Jeannerod and Ralf Treinen
A Formally Verified Interpreter for a Shell-like Programming Language
VSTTE, July 2017

Nicolas Jeannerod Séminaire Gallium September 18, 2017 35 / 35

	Gallery of horrors in shell
	Dynamic!
	Expansion
	Inconstant semantics
	Control flow

	The CoLiS language
	Requirements
	Definitions

	Formalisation
	Formulation
	Proof

	Appendix

