
A Formally Verified Interpreter
for a Shell-like Programming Language?

Nicolas Jeannerod1,2, Claude Marché3, and Ralf Treinen2

1 Dpt. d’Informatique, École normale supérieure, Paris, France
2 Univ. Paris Diderot, Sorbonne Paris Cité, IRIF, UMR 8243, CNRS, Paris, France

3 Inria & LRI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France

Abstract. The shell language is widely used for various system admin-
istration tasks on UNIX machines, as for instance as part of the instal-
lation process of software packages in FOSS distributions. Our mid-term
goal is to analyze these scripts as part of an ongoing effort to use formal
methods for the quality assurance of software distributions, to prove their
correctness, or to pinpoint bugs. However, the syntax and semantics of
POSIX shell are particularly treacherous.
We propose a new language called CoLiS which, on the one hand, has
well-defined static semantics and avoids some of the pitfalls of the shell,
and, on the other hand, is close enough to the shell to be the target of
an automated translation of the scripts in our corpus. The language has
been designed so that it will be possible to compile automatically a large
number of shell scripts into the CoLiS language.
We formally define its syntax and semantics in Why3, define an in-
terpreter for the language in the WhyML programming language, and
present an automated proof in the Why3 proof environment of soundness
and completeness of our interpreter with respect to the formal semantics.

1 Introduction

The UNIX shell is a command interpreter, originally named Thompson shell in
1971 for the first version of UNIX. Today, there exist many different versions
of the shell language and different interpreters with varying functionalities. The
most popular shell interpreter today is probably the Bourne-Again shell (a.k.a.
bash) which was written by Brian Fox in 1988 for the GNU project, and which
adds many features both for batch usage as an interpreter of shell scripts, and
for interactive usage.

We are interested in a corpus of maintainer scripts which are part of the
software packages distributed by the Debian project. The shell features which
may be used by these scripts are described in the Debian Policy [18], section
10.4, Scripts. Essentially, this is the shell described by the POSIX [12] standard.
In the rest of the paper we will just speak of “shell” when we mean the shell
language as defined by the POSIX standard.

? This work has been partially supported by the ANR project CoLiS, contract number
ANR-15-CE25-0001.



Maintainer scripts are run as the root user, that is with maximal privileges,
when installing, removing or upgrading packages. A single mistake in a script
may hence have disastrous consequences. The work described in this paper is
part of a research project with the goal of using formal methods to analyse
the maintainer scripts, that is to either formally prove properties of scripts as
required by the Debian policy, or to detect bugs. The corpus contains, even when
ignoring the small number of scripts written in other languages than POSIX
shell, more than 30.000 scripts.

Verifying shell scripts is a hard problem in the general case. However, we
think that the restriction to Debian maintainer scripts makes the problem more
manageable, since all the scripts are part of the common framework of the Debian
package installation process, and the Debian policy tells us how they are called,
and what they are allowed to do. For instance, the package installation process
is orchestrated by the dpkg tool which guarantees that packages are not installed
in parallel, which justifies our decision to completely ignore concurrency issues.
The installation scripts are indeed often simple and repetitive. They are written
by package developers, who have, in general, good knowledge of the shell; they
try to avoid bad practices, and are quite aware of the importance of writing
modular and maintainable code.

Even in that setting, the syntax and the semantics of shell is the first obstacle
that we encounter during our project, since they can be treacherous for both the
developer and the analysis tools. We have written a parser and a statistical
analyser for the corpus of shell scripts [14] which we used in order to know
which features of the shell are mostly used in our corpus, and which features
we may safely ignore. Based on this, we developed an intermediate language for
shell scripts, called CoLiS, which we will briefly define in this paper. The design
of the CoLiS language has been guided by the following principles:

– It must be “cleaner” than shell: we ignore the dangerous structures (like
eval allowing to execute arbitrary code given as a string) and we make
more explicit the dangerous constructions that we cannot eliminate.

– It must have clear syntax and semantics. The goal is to help the analysis tools
in their work and to allow a reader to be easily convinced of the soundness
of these tools without having to care about the traps of the syntax or the
semantics of the underlying language.

– The semantics must be less dynamic than that of the shell. This can be
achieved by a better typing discipline with, for instance, the obligation of
declaring the variables and functions in a header.

– An automated translation from shell must be possible. Since the correctness
of the translation from shell to CoLiS cannot be proven, as we will argue
in the following, one will have to trust it by reading or testing it. For this
reason, the CoLiS language cannot be fundamentally different from shell.

This language is not conceived as a replacement of shell in the software pack-
ages. If that was our goal, we would have designed a declarative language as a
replacement (similar to how systemd has nowadays mostly replaced System-V
init scripts). Our mid-term goal is to analyse and, in the end, help to improve the

2



existing shell scripts and not to change the complete packaging system. Because
of this, our language shares a lot of similarities (and drawbacks) with shell.

We have formally defined the syntax and semantics of CoLiS in the Why3
verification environment [5]. It is already at this stage clear that we will be faced
with an important problem when we will later write the compiler from shell
to CoLiS: how can we ensure the correctness of such a compiler? The root of
the problem is that there simply is no formal syntax and semantics of the shell
language, even though there are recent attempts to that (see Section 5). In fact,
if we could have clean syntax and semantics for the shell, then we wouldn’t need
our intermediate language, nor this translation, in the first place. An interpreter
plays an important role when we want to gain confidence in the correctness of
such a compiler, since it will allow us to compare the execution of shell scripts by
real shell interpreters, with the execution of their compilation into CoLiS by the
CoLiS interpreter. The main contribution of this paper is the proof of correctness
and completeness of our CoLiS interpreter, with respect to the formal semantics
of CoLiS.

Plan of the paper. We present the syntax and semantics of our language in
Section 2. We also explain some of our design choices. We describe our interpreter
in Section 3 and the proof of its completeness in Section 4. This proof uses a
technique that we believe to be interesting and reusable. Finally, we compare
our work to other’s in Section 5 and conclude in Section 6.

2 Language

2.1 Elements of Shell

Some features of the shell language are well known from imperative programming
languages, like variable assignments, conditional branching, loops (both for and
while). Shell scripts may call UNIX commands which in particular may operate
on the file system, but these commands are not part of the shell language itself,
and not in the scope of the present work. Without going into the details of
the shell language, there are some peculiarities which are of importance for the
design of the CoLiS language:

Expressions containing instructions. Expressions that calculate values
may contain control structures, for instance a for loop, or the invocation
of an external command. Execution of these instructions may of course fail,
and produce exceptions.

No static typing. Variables are not declared, and there is no static type disci-
pline. In principle, values are just strings, but it is common practice in shell
scripts to abuse these strings as lists of strings, by assuming that the ele-
ments of a list a separated by the so-called internal field separator (usually
the blank symbol).

Dynamic scoping. Functions may access non-local variables, however, this is
done according to the chronological order of the variables on the execution
stack (dynamic scoping), not according to the syntactic order in the script
text (lexical scoping).

3



String variables xs ∈ SV ar

List variables xl ∈ LV ar

Procedures names c ∈ F
Natural numbers n ∈ N
Strings σ ∈ String

Programs p ::= vdecl∗ pdecl∗ program t

Variables declarations vdecl ::= varstring xs | varlist xl

Procedures declarations pdecl ::= proc c is t

String expressions s ::= nils | fs :: s

String fragments fs ::= σ | xs | n | t
List expressions l ::= nill | fl :: l

List fragments fl ::= [s] | split s | xl
Terms t ::= true | false | fatal

| return t | exit t
| xs := s | xl := l
| t ; t | if t then t else t
| for xs in l do t | do t while t
| process t | pipe t into t
| call l | shift

Fig. 1. Syntax of CoLiS

Non-standard control flow. Some instructions of the shell language may sig-
nal exceptional exit, like a non-zero error-code. Different constructions of the
shell language propagate or capture these exceptions in different ways. This
has sometimes quite surprising consequences. For instance, false && true

and false are not equivalent in shell. Furthermore, there is a special mode
of the shell (the strict mode, in Debian parlance, obtained by the -e flag),
which changes the way how exceptions are propagated.

2.2 Syntax of CoLiS

The shell features identified in Section 2.1 motivate the design of the CoLiS lan-
guage, the syntax of which is shown in Figure 1. There only is an abstract syntax
because the language is meant to be the target of a compilation process from
the shell language, and is not designed to be used directly by human developers.

Terms and Expressions The mutual dependency between the categories of
instructions and expressions which we have observed in the shell does not pose
any real problem, and shows up in the definition of the CoLiS syntax as a
mutual recursion between the syntactic categories of terms (corresponding to
instructions), expression fragments, and expressions.

4



Variables and typing All the variables must be declared. These declarations
can only be placed at the beginning of the program. They are accompanied by
a type for the variables: string or list.

CoLiS makes an explicit distinction between strings and lists of strings. Since
we only have these two kinds of values, we do not use a type system, but can make
the distinction on the syntactic level between the categories of string expressions,
and the category of list expressions. Consequently, we have two different con-
structors in the abstract syntax for assignments: one for string values, and one
for list values. This separation is made possible by the fact that CoLiS syntax
isn’t supposed to be written by humans, so that we may simply use different
kinds of variables for strings and for lists. The future compiler from shell to
CoLiS will reject scripts for which it is not possible to statically infer types of
variables and expressions.

Arithmetical expressions, which we could have easily added at this point, are
omitted here for the sake of presentation, and since we found that they are very
rarely used in our corpus of scripts.

Absence of nested scopes. Note that variables and procedures have to be
declared at the beginning of the program, and that the syntax does not provide
for nested scopes. This is motivated by the fact that our corpus of scripts only
very rarely uses nested shell functions, and that the rare occurrences where they
are used in our corpus can easily be rewritten. Hence, we have circumvented the
problem of dynamic binding which exists in the shell. The future compiler from
shell to CoLiS will reject scripts which make use of dynamic scoping.

Control structures and control flow. Proper handling of exceptions is cru-
cial for shell scripts since in principle any command acting on the file system
may fail, and the script should take these possible failures into account and act
accordingly. Debian policy even stipulates that fatal errors of commands should
usually lead to abortion of the execution of a script, but also allows the main-
tainer to capture exceptions which he considers as non-fatal. Hence, we have
to keep the exception mechanism for the CoLiS language. This decision has an
important impact on the semantics of CoLiS, but also shows in the syntax (for
instance via the fatal term).

The terms true, false, return t and exit t correspond to shell built-ins;
fatal raises a fatal exception which in real shell scripts would be produced by a
failing UNIX command. Note that return t and exit t take a term instead of
a natural number. In fact, these commands transform a normal behaviour (of
the term t) into an exceptional one for the complete construct. This does only
provide for distinction between null or non-null exit codes, which is sufficient for
us since we found that the scripts of our corpus very rarely distinguish between
different non-null exit codes.

Some shell-specific structures remain. The shift command, for instance, re-
moves the first element of the argument list if it exists, and raises an error
otherwise.

5



Values: strings σ ∈ String
Values: lists λ ∈ StringList , {σ∗ | σ ∈ String}
Behaviours: terms b ∈ {True,False,Fatal,Return True

Return False,Exit True,Exit False}
Behaviours: expressions β ∈ {True,Fatal,None}

File systems FS
Environments: strings SEnv , [SV ar ⇀ String]

Environments: lists LEnv , [LV ar ⇀ StringList]

Contexts Γ ∈ FS × String × StringList× SEnv × LEnv

Judgments: terms t/Γ ⇓ σ ? b/Γ ′

Judgments: string fragment fs/Γ ⇓sf σ ? β/Γ ′

Judgements: string expression s/Γ ⇓s σ ? β/Γ ′

Judgements: list fragment fl/Γ ⇓lf λ ? β/Γ ′

Judgements: list expression l/Γ ⇓l λ ? β/Γ ′

Fig. 2. Semantics of CoLiS

Note that the procedure invocation, call, does not work on a procedure
name with arguments, but on a list whose first element will be considered as the
name of the procedure and the remaining part as the arguments. This makes a
difference when dealing with empty lists; in that case, the call is a success.

The pipe command (the | character in shell) takes the standard output of a
term and feeds it as input to a second term. The process construct corresponds
to the invocation of a sub-shell (backquotes, or $(...) in shell).

2.3 Semantics

All the elements (that is terms, string fragments and expressions, and list frag-
ments and expressions) of the language are evaluated (see semantic judgements
in Figure 2) in a context that contains the file system (left abstract in this work),
the standard input, the list of arguments from the command line and the vari-
able environments. They produce a new context, a behaviour and a string or a
list. In particular, terms produce strings, which is their standard output. For
instance, a judgement

t/Γ ⇓ σ ? b/Γ ′

means that the evaluation of the term t in the context Γ terminates with be-
haviour b, produces the new context Γ ′, and the standard output σ.

Note that the file system as well as the built-ins of the shell are left abstract
in this work. We focus only on the structure of the language.

6



nils/Γ ⇓s ε ?None/Γ

fs/Γ ⇓sf σ ? β/Γ ′ s/Γ ′ ⇓s σ′ ? β′/Γ ′′

fs :: s/Γ ⇓s σ · σ
′ ? ββ′/Γ ′′

σ/Γ ⇓sf σ ?None/Γ xs/Γ ⇓sf Γ.senv[xs] ?None/Γ

n/Γ ⇓sf Γ.args[n] ?None/Γ

t/Γ ⇓ σ ? b/Γ ′

t/Γ ⇓sf σ ? b/Γ [fs←Γ′.fs; input←Γ′.input]

Fig. 3. Semantic rules for the evaluation of string expressions and fragments

Behaviours We inherit a quite complex set of possible behaviours of terms from
the shell: True, False, Fatal, Return True, Return False, Exit True, Exit False
and None. The case of expressions is simpler, their behaviour can only be True for
success, Fatal for error, and None for the cases that do not change the behaviour.
A term behaviour b can be converted to an expression behaviour b as follows:

b := True if b ∈ {True,Return True,Exit True}
| Fatal otherwise

The composition ββ′ of two expression behaviours β and β′ is defined as :

ββ′ := β if β′ = None
| β′ otherwise

Expressions The semantics of string fragments and expressions are shown in
Figure 3. Each expression or fragment is evaluated with respect to a context
and produces a value of type string or list, an expression behaviour and a new
context. An expression behaviour can be True, Fatal or the absence of behaviour
None. Roughly, the behaviour of an expression is the last success or failure of a
term observed when evaluating the expression. Expression fragments other than
terms do not contribute to the behaviour of a term, this is modeled by giving
them the dummy behaviour None.

In the semantics of Figure 3, we write Γ.senv, Γ.lenv and Γ.args for the
fields of the context Γ containing the string environment, the list environments
and the argument line respectively.

Figure 4 gives the rules for the evaluation of a “do while” loop, and spells
out how the possible behaviours observed when evaluating the condition and the
body determine the behaviour of the complete loop.

The pipe construct completely ignores the behaviour of the first term. Fi-
nally, the process protects part of the context from modifications. Changes to
variables and arguments done inside a process are not observable. The modi-
fications on the file system and the standard input are kept. Their semantics is
given in Figure 5.

7



t1/Γ ⇓ σ1 ? b1/Γ1
b1 ∈ {Fatal,Return ,Exit }

(do t1 while t2)/Γ ⇓ σ1 ? b1/Γ1

Transmit-Body

t1/Γ ⇓ σ1 ? b1/Γ1
b1 ∈ {True,False}

t2/Γ1
⇓ σ2 ? True/Γ2

(do t1 while t2)/Γ2
⇓ σ3 ? b3/Γ3

(do t1 while t2)/Γ ⇓ σ1σ2σ3 ? b3/Γ3

True

t1/Γ ⇓ σ1 ? b1/Γ1
b1 ∈ {True,False}

t2/Γ1
⇓ σ2 ? b2/Γ2

b2 ∈ {False,Fatal}
(do t1 while t2)/Γ ⇓ σ1σ2 ? b1/Γ2

False

t1/Γ ⇓ σ1 ? b1/Γ1
b1 ∈ {True,False}

t2/Γ1
⇓ σ2 ? b2/Γ2

b2 ∈ {Return ,Exit }
(do t1 while t2)/Γ ⇓ σ1σ2 ? b2/Γ2

Transmit-Cond

Fig. 4. Semantic rules for the “do while”

t1/Γ ⇓ σ1 ? b1/Γ1
t2/Γ1[input←σ1] ⇓ σ2 ? b2/Γ2

pipe t1 into t2/Γ ⇓ σ2 ? b2/Γ2[input←Γ1.input]

Pipe

t/Γ ⇓ σ ? b/Γ ′

process t/Γ ⇓ σ ? b/Γ [fs←Γ ′.fs, input←Γ ′.input]

Process

Fig. 5. Semantics of the evaluation for pipe and process

2.4 Mechanised version

We have formalised the syntax and semantics of CoLiS using the proof envi-
ronment Why3 [5]. Why3 is an environment dedicated to deductive program
verification. It provides both a specification language, and a programming lan-
guage. The theorems and annotated programs (in fact, everything that needs to
be proven) are converted by Why3 into proof obligations and passed to external
provers. Its programming language, WhyML, is a language of the ML family con-
taining imperative constructs such as references and exceptions. These elements
are well handled in the proof obligations, allowing the user to write programs in
a natural way.

The semantics of CoLiS is expressed in the Why3 specification language as a
so-called inductive predicate, defined by a set of Horn clauses. The translation
is completely straightforward, for instance a fragment of the translation of the
semantic rules from Figure 4 to Why3 is shown in Figure 6. Formalising the
semantics in Why3 this way has the immediate advantage of syntax and type
checks done by the Why3 system, and is of course indispensable for proving the
correctness of the interpreter.

8



inductive eval_term term context string behaviour context =

| EvalT_DoWhile_Transmit_Body : ∀ t1 Γ σ1 b1 Γ 1 t2.

eval_term t1 Γ σ1 b1 Γ 1 →
(match b1 with BNormal _ → false | _ → true end) →

eval_term (TDoWhile t1 t2) Γ σ1 b1 Γ 1

| EvalT_DoWhile_True : ∀ t1 Γ σ1 b1 Γ 1 t2 σ2 Γ 2 σ3 b3 Γ 3.

eval_term t1 Γ σ1 (BNormal b1) Γ 1 →
eval_term t2 Γ 1 σ2 (BNormal True) Γ 2 →
eval_term (TDoWhile t1 t2) Γ 2 σ3 b3 Γ 3 →

eval_term (TDoWhile t1 t2) Γ (concat (concat σ1 σ2) σ3) b3 Γ 3

Fig. 6. Why3 version of the semantic rules for the “do while”

3 Interpreter

The interpreter is written in WhyML, the programming language of the Why3
environment, as a set of mutually recursive functions. The functions are written
in a standard style combining functional and imperative features. The main
interpreter function has the following signature in Why3:

let rec interp_term (t: term) (Γ: context) (stdout : ref string)

: (bool, context)

There are some fundamental differences between the interpreter on the one hand,
and the specification of the semantics on the other hand:

– The function interp term returns normally only in case of normal be-
haviours.

– The exceptional behaviours Fatal, Return b and Exit b are signaled by rais-
ing Why3 exceptions, respectively of the form Fatal(Γ ), Return (b, Γ ) and
Exit (b, Γ ) where Γ is the resulting context.

– The standard output is modelled by the mutable variable stdout of type
string, to which characters are written. This makes the code closer to a
standard interpreter which displays results as it produces them.

– The composition of expression behaviours is done by an auxiliary function
with an accumulator: instead of yielding the behaviours as a component of
a complex result type and then composing them (what corresponds to the
semantic rules), we transmit to the recursive call the current behaviour, and
let it update it if needed.

To illustrate theses differences we present in Figure 7 an excerpt of the inter-
preter code for the case of fatal command, and the conditional command. Note

9



match t with

| TFatal → raise (EFatal Γ)
| TIf t1 t2 t3 →
let (b1, Γ 1) =

try

interp_term t1 Γ stdout

with

EFatal Γ’ → (false, Γ’)
end

in

interp_term (if b1 then t2 else t3) Γ 1 stdout

...

Fig. 7. Code of the interpreter for the if construct

that exceptions, other that EFatal, potentially raised by the interpretation of
t1 are naturally propagated. This implicit propagation makes the code of the
interpreter significantly simpler than the inductive definition of the semantics.

Due to while loops in particular, this interpreter does not necessarily termi-
nate. Yet, we prove that this interpreter is sound and complete with respect to
the semantics, as expressed by the two following theorems. We define a notation
for executions of the interpreter. For any term t, contexts Γ and Γ ′, string σ
and behaviour b,

t/Γ 7→ σ ? b/Γ ′

states that when given the term t, the context Γ and a string reference as its
input, the interpreter terminates, writing the string σ at the end of the reference.
It terminates

– normally when b is True or False, returning the boolean b and the new
context Γ ′;

– with an exception EFatal(Γ ′), EReturn(b′, Γ ′) or EExit(b′, Γ ′) when b is
Fatal, Return b′ or Exit b′ respectively.

Theorem 1 (Soundness of the interpreter). For all t, Γ , σ, b and Γ ′: if
t/Γ 7→ σ ? b/Γ ′ then t/Γ ⇓ σ ? b/Γ ′

Theorem 2 (Completeness of the interpreter). For all t, Γ , σ, b and Γ ′:
if t/Γ ⇓ σ ? b/Γ ′ then t/Γ 7→ σ ? b/Γ ′

Due to the mutual recursion in the definition of the abstract syntax, and in
the functions of the interpreter, we need of course analogous theorems for string
and list fragments and expressions, which are omitted here.

3.1 Proof of soundness

Soundness is expressed in Why3 as a set of post-conditions (see Figure 8) for
each function of the interpreter. Why3 handles the recursive functions pretty

10



let rec interp_term (t: term) (Γ: context) (stdout : ref string)

: (bool, context)

diverges

returns { (b, Γ’) → ∃ σ. !stdout = concat (old !stdout) σ
∧ eval_term t Γ σ (BNormal b) Γ’ }

raises { EFatal Γ’ → ∃ σ. !stdout = concat (old !stdout) σ
∧ eval_term t Γ σ BFatal Γ’ }

...

Fig. 8. Contract of the sound interpreter. There are similar post-conditions for other
exceptions raised.

well and splits the proof into many simpler sub-goals. However, some of these
subgoals still require up to 30 seconds to be proven by the E prover.

One difficulty in the proof comes from the fact that the interpreter uses an
additional argument to pass the behaviour of the previous term. This makes the
annotations of the functions harder to read and the goals harder to prove, with
post-conditions of the form:

(eval_sexpr_opt s Γ σ None Γ’ ∧ b = previous)

∨ eval_sexpr_opt s Γ σ (Some b) Γ

for an output (σ, b, Γ ′) of the expression interpreter.
The choice to have an interpreter with imperative feature (and thus differ-

ent from the declarative semantics) makes the proof hard. The most disturbing
feature for provers is the use of a reference to model the standard output. This
causes proof obligations of the form:

∃ σ. !stdout = concat (old !stdout) σ ∧ eval_term t Γ σ b Γ’

An existential quantification is hard for SMT solvers; it is a challenge for them
to find the right instance of the existentially quantified variable that makes the
proof work. This is in general a weak point of SMT solvers and requires provers
like the E prover which is based on the superposition calculus.

4 Proof of completeness

We show completeness of the interpreter (Theorem 2) by proving two intermedi-
ary lemmas. The first lemma states the functionality of our semantic predicates:

Lemma 1 (Functionality of the semantic predicates). For all t, Γ , Γ1,
Γ2, σ1, σ2, b1, and b2: if t/Γ ⇓ σ1 ? b1/Γ1

and t/Γ ⇓ σ2 ? b2/Γ2
, then σ1 = σ2,

b1 = b2 and Γ1 = Γ2.

This lemma is quite straightforward to prove.
The second lemma states the termination of the interpreter in case one can

prove a judgement about the semantics for the same input:

11



Lemma 2 (Termination of the interpreter). For all t, Γ , Γ1, σ1 and b1: if
t/Γ ⇓ σ1 ? b1/Γ1

, then the interpreter terminates when given t, Γ .

It is not obvious how to prove this lemma in the Why3 framework. The
difficulty of the proof will be discussed below in Section 4.1, and our solution to
the problem is presented in Section 4.2.

Theorem 2, stating the completeness of the interpreter, follows immediately
from the above two lemmas, together with Theorem 1 stating the soundness of
the interpreter:

Proof. Let t be a term, Γ and Γ1 contexts, σ1 a string and b1 a behaviour.
Let us assume that there exists a proof of the judgement t/Γ ⇓ σ1 ? b1/Γ1

. By
Lemma 2 (termination of the interpreter), there exists some results σ2, b2 and Γ2

computed by the interpreter. By Theorem 1 (soundness of the interpreter), we
have t/Γ ⇓ σ2 ? b2/Γ2

. By Lemma 1 (functionality of the semantics), we obtain
σ1 = σ2, b1 = b2 and Γ1 = Γ2, which allows us to conclude.

4.1 Proving (or not proving) termination with heights and sizes

A first naive idea to prove the two lemmas is to use induction on the structure
of the terms. This does, of course, not work since one premise of the rule True
for the do while construct (see Figure 4) uses the same term as its conclusion.

In fact, what does decrease at every iteration is the proof of the judgement
itself. A common way in by-hand proofs to exploit that fact is to use the size of
the proof (i.e. the number of rules involved), or alternatively the height of the
proof tree.

These numbers could then be passed to the interpreter as a new argument
along with a pre-condition specifying that this number corresponds to the size
(resp. the height) of the proof. It is then easy to prove that it decreases at each
recursive call, and since this value is always positive, we obtain termination of the
program. These solutions, however, have drawbacks that make them unsuitable
for use in the Why3 environment:

– On the one hand, back-end SMT solvers can reason about arithmetic, but
have only incomplete strategies for handling quantifiers; on the other hand
superposition provers are good with quantifiers but do not support arith-
metic. One could think of replacing an axiomatised arithmetic by a simple
successor arithmetic, that is using only zero and the successor function. This
would not solve the problem since when using the size one still needs addi-
tion and subtraction, and when using the height one needs the maximum
function, and handling of inequalities.

– When we know the size of a proof, we cannot deduce from it the size of the
proofs of the premises, which makes the recursive calls complicated.
A way to solve this problem is to modify the interpreter so that it returns
the “unused” size (a technique, sometimes referred to as the credit or fuel,
which can be useful for proving the complexity of a program). This does
imply a major modification of the interpreter, though: the exceptions would

12



type skeleton =

| S0

| S1 skeleton

| S2 skeleton skeleton

| S3 skeleton skeleton skeleton

Fig. 9. The data type for skeletons

have to carry that number as well, and the interpreter would have to catch
them every time, just to decrement the size and then raise them again.

– We have a similar problem with the height: we cannot deduce from the height
of a proof the heights of the premises, but only an upper bound.
We could solve this problem by using inequalities either in the pre- and post-
conditions or in the predicate itself. Nevertheless, it makes the definition of
the predicate and the pre- and post-conditions more onerous, and the work
of the SMT solvers more complicated.

4.2 Proving termination with ghosts and skeletons

The proof of termination of the interpreter would be easy if we could use an
induction on the proof tree of the judgement. The problem is that the proof tree
is (implicitly) constructed during the proof, and is not available as a first-class
value in the specification. The solution we propose is to modify the predicates
specifying the semantics of CoLiS to produce a lightweight representation of the
proof tree. This representation, which we call a skeleton, contains only the shape
of the proof tree. The idea is that a complete proof tree could be abstracted to
a skeleton just be ignoring all the contents of the nodes, and just keeping the
outline of the tree. This avoids the use of arithmetic, since provers only have to
work with a simple algebraic data type.

The definition of the type of skeletons in Why3 is shown in Figure 9. There
is one constructor for every number of premises of rules in the definition of the
semantics, that is in our case, 0, 1, 2 and 3. We then have alternative definitions
of our predicates including their skeleton (see Figure 10).

We can now prove the properties of the semantic predicates by induction on
the skeletons. Skeletons make proofs by induction possible when nothing else
than the proof is decreasing. In fact, it also has an other interesting advantage:
we often need to conduct inductions on our semantic predicates. However, these
predicates are mutually recursive and do not work on the same data types, which
makes our proofs verbose and annoying. Now, we can run our induction on the
skeletons, and that makes the definitions and proofs of the theorems much easier.
This is, for instance, the case for the Theorem 1.

It remains the question how to connect the interpreter to the skeletons pro-
duced by the predicates. This is where ghost arguments come in. In the context
of deductive program verification, ghost code [9] is a part of a program that is
added solely for the purpose of specification. Ghost code cannot have any impact

13



inductive eval_term term context string behaviour context skeleton =

| EvalT_DoWhile_True : ∀ t1 Γ σ1 b1 Γ 1 t2 σ2 Γ 2 σ3 b3 Γ 3 s1 s2 s3.

eval_term t1 Γ σ1 (BNormal b1) Γ 1 s1 →
eval_term t2 Γ 1 σ2 (BNormal True) Γ 2 s2 →
eval_term (TDoWhile t1 t2) Γ 2 σ3 b3 Γ 3 s3 →

eval_term (TDoWhile t1 t2) Γ
(concat (concat σ1 σ2) σ3) b3 Γ 3 (S3 s1 s2 s3)

Fig. 10. (Part of the) predicates with skeletons

let rec interp_term (t: term) (g: context) (stdout : ref string)

(ghost sk: skeleton) : (bool, context)

requires { ∃ s b g’. eval_term t g s b g’ sk }

variant { sk }

returns { (b, g’) → ∃ s. !stdout = concat (old !stdout) s

∧ eval_term t g s (BNormal b) g’ sk }

Fig. 11. Contract for the terminating interpreter. There are similar post-conditions for
exceptions raised.

on the execution of the code: it must be removable without any observable dif-
ference on the program. In this spirit, we extend the functions of the interpreter
with a ghost parameter which holds the skeleton (see Figure 11).

We also add ghost code in the body of the function (see Figure 12) in order
to give indications to the provers, using some auxiliary destructor functions for
skeletons. The function skeleton23, for instance, takes a skeleton that is required
to have a head of arity 2 or 3, and returns its direct subtrees. The fact that it
requires the skeleton to have a head of arity 2 or 3 adds the right axioms and
goals to the proof context, thus helping the provers.

This works well because we wrote the semantics in a specific way: the order
of the premises always corresponds to the order in which the computation must
happen. This means that we can take the skeleton of the first premise and give
it to the first recursive call. After that call, either an exception is raised which
interrupts the control flow, or we take the skeleton of the second premise and
give it to the second recursive call.

It would have been tempting to match on the term and the skeleton at the
same time (to have something like |TDoWhile t1 t2, S1 sk1 → .). This, how-
ever, does not work, since it would make the execution of the code dependent on
a ghost parameter, which is rejected by the type checker of Why3 as a forbidden
effect of ghost code on non-ghost code [9].

14



| TDoWhile t1 t2 →
let ghost sk1 = skeleton123 sk in

(* At this point, we know that the rules

that might apply can have 1, 2 or 3 premises. *)

let (b1, g1) = interp_term t1 g stdout sk1 in

let (b2, g2) =

try

let ghost (_, sk2) = skeleton23 sk in

(* At this point, we know that the rule

with 1 premise cannot be applied anymore. *)

interp_term t2 g1 stdout sk2

with

EFatal g2 → (false, g2)

end

in

if b2 then

let ghost (_, _, sk3) = skeleton3 sk in

(* And finally, only the rule with 3 premises can be applied. *)

interp_term (TDoWhile t1 t2) g2 stdout sk3

else

(b1, g2)

Fig. 12. Body of the terminating interpreter

4.3 Reproducibility

Using the technique of skeletons, all the proof obligations are proven by auto-
mated provers. The proof takes some time because there are a many cases (we
obtain 207 subgoals), but none of those takes more than 4 seconds to our provers.

The Why3 code for the syntax, semantics, the interpreter and all the proofs is
available online [13]. The proofs need of course Why3 [5], and at least the provers
Alt-Ergo [4] (1.30), Z3 [16] (4.5.0) and E [17] (1.9.1). One may in addition use
CVC3 [3], CVC4 [2] and SPASS [19] in order to gain additional confirmation.

5 Related work

Formalising the semantics of programming language is most of the time done
using interactive proof assistants like Coq or Isabelle. Yet, formalising seman-
tics and proving complex properties, with automatic provers only, was already
shown possible by Clochard et. al [8], who also use the Why3 environment. The
difficulty of proving completeness was not addressed in that work, though. Inter-
estingly, the issues we faced regarding completeness and inductive predicates was
present in other work conducted within the CoLiS project by Chen et al. [7], for
proving a shell path resolution algorithm. They solve completeness by indexing
their inductive predicates with heights. We would like to investigate whether an
approach with skeletons instead of heights would make the proofs easier. To our

15



knowledge, the idea of using proof skeletons is new, even though the idea seems
quite close to the concept of step-indexing for reasoning on operational semantic
rules [1].

Several tools can spot certain kinds of errors in shell scripts. The tool
checkbashisms [6], for instance, detects usage of bash-specific constructs in
shell scripts. It is based on regular expressions. The ShellCheck [11] tool de-
tects error-prone usages of the shell language. This tool is written in Haskell and
analyses the scripts on-the-fly while parsing.

There have been few attempts to formalize the shell. Recently, Greenberg [10]
has presented elements of formal semantics of POSIX shell. The work behind
Abash [15] contains a formalization of the part of the semantics concerned with
variable expansion and word splitting. The Abash tool itself performs abstract
interpretation to analyze possible arguments passed by Bash scripts to UNIX
commands, and thus to identify security vulnerabilities in Bash scripts.

6 Conclusion and future work

We presented a Why3 implementation of the semantics of an imperative pro-
gramming language. This formalisation is faithful to the semantic rules written
by hand. Our main contribution is an interpreter for this language proven both
sound and complete. The proof of completeness uses an original technique in-
volving what we call skeletons: an abstraction of the proof tree for an inductive
predicate, that decreases on recursive call, allowing us to use induction on the
proof itself.

Future work In the near future, we would like to try a more direct proof of
completeness (i.e. without separating it into the soundness, the functionality
of the semantic predicates and the termination of the algorithm). Such a proof
would be interesting in cases where the functionality can not be proven (when
we can derive the same judgement in different manners, for instance).

To fulfil our mid-term goal to verify shell scripts in Debian packages, we will
need to formalise the file system as well as its built-ins. We will also have to
write the automated translation from shell to CoLiS. This translation will have
to analyse the scripts statically to determine, among other things, the type of
the variables. The first step of this compiler, the parser of POSIX shell scripts,
is described in [14].

References

1. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683 (Sep 2001),
http://doi.acm.org/10.1145/504709.504712

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of the 23rd international confer-
ence on Computer aided verification. pp. 171–177. CAV’11, Springer-Verlag, Berlin,
Heidelberg (2011), http://cvc4.cs.stanford.edu/web/

16

http://doi.acm.org/10.1145/504709.504712
http://cvc4.cs.stanford.edu/web/


3. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) 19th Inter-
national Conference on Computer Aided Verification. Lecture Notes in Computer
Science, vol. 4590, pp. 298–302. Springer, Berlin, Germany (Jul 2007)

4. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.:
The Alt-Ergo automated theorem prover (2008), https://alt-ergo.ocamlpro.

com/

5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. pp. 53–64. Wroc law, Poland (August 2011), http://proval.lri.fr/
publications/boogie11final.pdf

6. Braakman, R., Rodin, J., Gilbey, J., Hobley, M.: checkbashisms, https://

sourceforge.net/projects/checkbaskisms/

7. Chen, R., Clochard, M., Marché, C.: A formal proof of a unix path resolution
algorithm. Research Report RR-8987, Inria Saclay Ile-de-France (Dec 2016)

8. Clochard, M., Filliâtre, J.C., Marché, C., Paskevich, A.: Formalizing semantics
with an automatic program verifier. In: Giannakopoulou, D., Kroening, D. (eds.)
6th Working Conference on Verified Software: Theories, Tools and Experiments
(VSTTE). Lecture Notes in Computer Science, vol. 8471, pp. 37–51. Springer,
Vienna, Austria (2014)

9. Filliâtre, J.C., Gondelman, L., Paskevich, A.: The Spirit of Ghost Code. In: CAV
2014, Computer Aided Verification - 26th International Conference. Vienna Sum-
mer Logic 2014, Austria (Jul 2014), https://hal.inria.fr/hal-00873187

10. Greenberg, M.: Understanding the POSIX shell as a programming language. In:
Off the Beaten Track 2017. Paris, France (Jan 2017)

11. Holen, V.: Shellcheck, https://github.com/koalaman/shellcheck
12. IEEE and The Open Group: POSIX.1-2008/Cor 1-2013, http://pubs.opengroup.

org/onlinepubs/9699919799/

13. Jeannerod, N.: Full Why3 code for the CoLiS language and its proofs, http://
toccata.lri.fr/gallery/colis_interpreter.en.html

14. Jeannerod, N., Régis-Gianas, Y., Treinen, R.: Having Fun With 31.521 Shell Scripts
(Apr 2017), https://hal.archives-ouvertes.fr/hal-01513750, working paper

15. Mazurak, K., Zdancewic, S.: ABASH: finding bugs in bash scripts. In: PLAS07:
Proceedings of the 2007 workshop on Programming languages and analysis for
security. pp. 105–114. San Diego, CA, USA (Jun 2007)

16. de Moura, L., Bjørner, N.: Z3, an efficient SMT solver. In: TACAS. Lecture Notes
in Computer Science, vol. 4963, pp. 337–340. Springer (2008), https://github.
com/Z3Prover/z3

17. Schulz, S.: System description: E 0.81. In: Basin, D.A., Rusinowitch, M. (eds.)
Second International Joint Conference on Automated Reasoning. Lecture Notes
in Computer Science, vol. 3097, pp. 223–228. Springer (2004), http://wwwlehre.
dhbw-stuttgart.de/~sschulz/E/E.html

18. The Debian Policy Mailing List: Debian Policy Manual, https://www.debian.org/
doc/debian-policy/

19. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wis-
chnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) 22nd Interna-
tional Conference on Automated Deduction. Lecture Notes in Computer
Science, vol. 5663, pp. 140–145. Springer (2009), http://www.mpi-inf.

mpg.de/departments/automation-of-logic/software/spass-workbench/

classic-spass-theorem-prover/

17

https://alt-ergo.ocamlpro.com/
https://alt-ergo.ocamlpro.com/
http://proval.lri.fr/publications/boogie11final.pdf
http://proval.lri.fr/publications/boogie11final.pdf
https://sourceforge.net/projects/checkbaskisms/
https://sourceforge.net/projects/checkbaskisms/
https://hal.inria.fr/hal-00873187
https://github.com/koalaman/shellcheck
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://toccata.lri.fr/gallery/colis_interpreter.en.html
http://toccata.lri.fr/gallery/colis_interpreter.en.html
https://hal.archives-ouvertes.fr/hal-01513750
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover/
http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover/
http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover/

	A Formally Verified Interpreter for a Shell-like Programming Language

