
A Formally Verified Interpreter for a Shell-like
Programming Language

Claude Marché Nicolas Jeannerod Ralf Treinen

Vals seminar, July 7, 2017

Nicolas Jeannerod VALS Seminar July 7, 2017 1 / 61

The CoLiS project

Correctness of Linux Scripts

ANR project, 5 years (October 2015 – September 2020)

Three workpackages:

IRIF, Université Paris-Diderot
Inria Saclay
Inria Lille

Goal: apply verification techniques to Debian maintainer scripts.
Those are POSIX Shell scripts:

used for installation, upgrade, removal of packages
ran as root user
mistakes are easy to make and hard to detect

We are not trying to replace the Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 2 / 61

The CoLiS project

Correctness of Linux Scripts

ANR project, 5 years (October 2015 – September 2020)

Three workpackages:

IRIF, Université Paris-Diderot
Inria Saclay
Inria Lille

Goal: apply verification techniques to Debian maintainer scripts.
Those are POSIX Shell scripts:

used for installation, upgrade, removal of packages
ran as root user
mistakes are easy to make and hard to detect

We are not trying to replace the Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 2 / 61

The CoLiS project

Correctness of Linux Scripts

ANR project, 5 years (October 2015 – September 2020)

Three workpackages:

IRIF, Université Paris-Diderot
Inria Saclay
Inria Lille

Goal: apply verification techniques to Debian maintainer scripts.
Those are POSIX Shell scripts:

used for installation, upgrade, removal of packages
ran as root user
mistakes are easy to make and hard to detect

We are not trying to replace the Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 2 / 61

The CoLiS project

Correctness of Linux Scripts

ANR project, 5 years (October 2015 – September 2020)

Three workpackages:

IRIF, Université Paris-Diderot
Inria Saclay
Inria Lille

Goal: apply verification techniques to Debian maintainer scripts.
Those are POSIX Shell scripts:

used for installation, upgrade, removal of packages
ran as root user
mistakes are easy to make and hard to detect

We are not trying to replace the Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 2 / 61

The CoLiS project

Correctness of Linux Scripts

ANR project, 5 years (October 2015 – September 2020)

Three workpackages:

IRIF, Université Paris-Diderot
Inria Saclay
Inria Lille

Goal: apply verification techniques to Debian maintainer scripts.
Those are POSIX Shell scripts:

used for installation, upgrade, removal of packages
ran as root user
mistakes are easy to make and hard to detect

We are not trying to replace the Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 2 / 61

The CoLiS project

Correctness of Linux Scripts

ANR project, 5 years (October 2015 – September 2020)

Three workpackages:

IRIF, Université Paris-Diderot
Inria Saclay
Inria Lille

Goal: apply verification techniques to Debian maintainer scripts.
Those are POSIX Shell scripts:

used for installation, upgrade, removal of packages
ran as root user
mistakes are easy to make and hard to detect

We are not trying to replace the Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 2 / 61

The CoLiS project

Correctness of Linux Scripts

ANR project, 5 years (October 2015 – September 2020)

Three workpackages:

IRIF, Université Paris-Diderot
Inria Saclay
Inria Lille

Goal: apply verification techniques to Debian maintainer scripts.
Those are POSIX Shell scripts:

used for installation, upgrade, removal of packages
ran as root user
mistakes are easy to make and hard to detect

We are not trying to replace the Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 2 / 61

The CoLiS project

Correctness of Linux Scripts

ANR project, 5 years (October 2015 – September 2020)

Three workpackages:

IRIF, Université Paris-Diderot
Inria Saclay
Inria Lille

Goal: apply verification techniques to Debian maintainer scripts.
Those are POSIX Shell scripts:

used for installation, upgrade, removal of packages
ran as root user
mistakes are easy to make and hard to detect

We are not trying to replace the Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 2 / 61

Language Elements of Shell

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 3 / 61

Language Elements of Shell

Execute arbitrary strings

Execute commands from strings:

a="echo foo"

$a ## echoes "foo"

or any code with eval:

eval "if true; then echo foo; fi"

Nicolas Jeannerod VALS Seminar July 7, 2017 4 / 61

Language Elements of Shell

Execute arbitrary strings

Execute commands from strings:

a="echo foo"

$a ## echoes "foo"

or any code with eval:

eval "if true; then echo foo; fi"

Nicolas Jeannerod VALS Seminar July 7, 2017 4 / 61

Language Elements of Shell

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## echoes "bar"

Example 2-in-1 (expansion and dynamic scoping):

f () { echo $1 $a; }

a=foo

a=bar f $a ## echoes "foo bar"

echo $a ## echoes "bar"

Nicolas Jeannerod VALS Seminar July 7, 2017 5 / 61

Language Elements of Shell

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## echoes "bar"

Example 2-in-1 (expansion and dynamic scoping):

f () { echo $1 $a; }

a=foo

a=bar f $a ## echoes "foo bar"

echo $a ## echoes "bar"

Nicolas Jeannerod VALS Seminar July 7, 2017 5 / 61

Language Elements of Shell

Dynamic

Everything is dynamic:

f () { g; }

g () { a=bar; }

a=foo

f

echo $a ## echoes "bar"

Example 2-in-1 (expansion and dynamic scoping):

f () { echo $1 $a; }

a=foo

a=bar f $a ## echoes "foo bar"

echo $a ## echoes "bar"

Nicolas Jeannerod VALS Seminar July 7, 2017 5 / 61

Language Elements of Shell

Behaviours

Nice falses and the violent one:

set -e

! true ; echo foo ## echoes "foo"

false ; echo foo ## exits

Many ways to catch “exit” and “return”:

(exit)

(return)

exit | true

echo "still not dead"

exit

Nicolas Jeannerod VALS Seminar July 7, 2017 6 / 61

Language Elements of Shell

Behaviours

Nice falses and the violent one:

set -e

! true ; echo foo ## echoes "foo"

false ; echo foo ## exits

Many ways to catch “exit” and “return”:

(exit)

(return)

exit | true

echo "still not dead"

exit

Nicolas Jeannerod VALS Seminar July 7, 2017 6 / 61

Language Elements of Shell

Behaviours

Nice falses and the violent one:

set -e

! true ; echo foo ## echoes "foo"

false ; echo foo ## exits

Many ways to catch “exit” and “return”:

(exit)

(return)

exit | true

echo "still not dead"

exit

Nicolas Jeannerod VALS Seminar July 7, 2017 6 / 61

Language Elements of Shell

How behaviours are handled

0

1-
12
7

1-
12
7*

R
et
ur
n

0

R
et
ur
n

1-
12
7

E
xi
t

0 E
xi
t

1-
12
7

Pipe Normal

Sequence Normal Exception

Test True False Exception

Function call Success Failure Success Failure Exception

Subprocess Success Failure Success Failure Success Failure

Nicolas Jeannerod VALS Seminar July 7, 2017 7 / 61

Language Elements of Shell

The expansion mechanism

Used to represent both strings and lists of strings:

args="-l -a"

args="$args -h"

path=/home

path=$path/nicolas

ls $args $path

Can contain all sorts of things:

echo foo$(echo "$bar"baz)"$bar"

Nicolas Jeannerod VALS Seminar July 7, 2017 8 / 61

Language Elements of Shell

The expansion mechanism

Used to represent both strings and lists of strings:

args="-l -a"

args="$args -h"

path=/home

path=$path/nicolas

ls $args $path

Can contain all sorts of things:

echo foo$(echo "$bar"baz)"$bar"

Nicolas Jeannerod VALS Seminar July 7, 2017 8 / 61

Language Elements of Shell

The expansion mechanism

Used to represent both strings and lists of strings:

args="-l -a"

args="$args -h"

path=/home

path=$path/nicolas

ls $args $path

Can contain all sorts of things:

echo foo$(echo "$bar"baz)"$bar"

Nicolas Jeannerod VALS Seminar July 7, 2017 8 / 61

Language Elements of Shell

The expansion mechanism

Used to represent both strings and lists of strings:

args="-l -a"

args="$args -h"

path=/home

path=$path/nicolas

ls $args $path

Can contain all sorts of things:

echo foo$(echo "$bar"baz)"$bar"

Nicolas Jeannerod VALS Seminar July 7, 2017 8 / 61

Language CoLiS

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 9 / 61

Language CoLiS

Requirements

Intermediary language (not a replacement of Shell);

“Cleaner” than Shell (no eval for instance);

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to Shell:

A reader must be convinced that it shares the same semantics as the
Shell,
Target of an automated translation from Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 10 / 61

Language CoLiS

Requirements

Intermediary language (not a replacement of Shell);

“Cleaner” than Shell (no eval for instance);

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to Shell:

A reader must be convinced that it shares the same semantics as the
Shell,
Target of an automated translation from Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 10 / 61

Language CoLiS

Requirements

Intermediary language (not a replacement of Shell);

“Cleaner” than Shell (no eval for instance);

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to Shell:

A reader must be convinced that it shares the same semantics as the
Shell,
Target of an automated translation from Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 10 / 61

Language CoLiS

Requirements

Intermediary language (not a replacement of Shell);

“Cleaner” than Shell (no eval for instance);

Well-defined and easily understandable semantics:

Some typing (strings vs. string lists),
Variables and functions declared in a header,
Dangers made more explicit;

“Close enough” to Shell:

A reader must be convinced that it shares the same semantics as the
Shell,
Target of an automated translation from Shell.

Nicolas Jeannerod VALS Seminar July 7, 2017 10 / 61

Language CoLiS

Syntax – 1

String variables xs ∈ SVar

List variables xl ∈ LVar

Procedures names c ∈ F

Programs p ::= vdecl∗ pdecl∗ program t

Variables decl. vdecl ::= varstring xs | varlist xl

Procedures decl. pdecl ::= proc c is t

Nicolas Jeannerod VALS Seminar July 7, 2017 11 / 61

Language CoLiS

Syntax – 2

Terms t ::= true | false | fatal

| return t | exit t

| xs := s | xl := l

| t ; t | if t then t else t

| for xs in l do t | while t do t

| process t | pipe t into t

| call l | shift

Nicolas Jeannerod VALS Seminar July 7, 2017 12 / 61

Language CoLiS

Syntax – 3

String expressions s ::= nils | fs :: s

String fragments fs ::= σ | xs | n | t

List expressions l ::= nill | fl :: l

List fragments fl ::= s | split s | xl

Nicolas Jeannerod VALS Seminar July 7, 2017 13 / 61

Language CoLiS

Semantics – First definitions

Behaviours: terms b ∈ {True,False,Fatal,Return True
Return False,Exit True,Exit False}

Behaviours: expressions β ∈ {True,Fatal,None}

Environments: strings SEnv , [SVar ⇀ String]

Environments: lists LEnv , [LVar ⇀ StringList]

Contexts Γ ∈ FS × String × StringList
×SEnv × LEnv

In a context: file system, standard input, arguments line, string
environment, list environment.

Nicolas Jeannerod VALS Seminar July 7, 2017 14 / 61

Language CoLiS

Semantics – First definitions

Behaviours: terms b ∈ {True,False,Fatal,Return True
Return False,Exit True,Exit False}

Behaviours: expressions β ∈ {True,Fatal,None}

Environments: strings SEnv , [SVar ⇀ String]

Environments: lists LEnv , [LVar ⇀ StringList]

Contexts Γ ∈ FS × String × StringList
×SEnv × LEnv

In a context: file system, standard input, arguments line, string
environment, list environment.

Nicolas Jeannerod VALS Seminar July 7, 2017 14 / 61

Language CoLiS

Semantic judgments

Judgments: terms t/Γ ⇓ σ ? b/Γ′

Judgments: string fragment fs/Γ ⇓sf σ ? β/Γ′

Judgments: string expression s/Γ ⇓s σ ? β/Γ′

Judgments: list fragment fl/Γ ⇓lf λ ? β/Γ′

Judgments: list expression l/Γ ⇓l λ ? β/Γ′

Nicolas Jeannerod VALS Seminar July 7, 2017 15 / 61

Language CoLiS

A few rules – Sequence

Sequence-Normal

t1/Γ ⇓ σ1 ? b1/Γ1
b1 ∈ {True,False} t2/Γ1

⇓ σ2 ? b2/Γ2

(t1 ; t2)/Γ ⇓ σ1σ2 ? b2/Γ2

Sequence-Exception

t1/Γ ⇓ σ1 ? b1/Γ1
b1 ∈ {Fatal,Return ,Exit }

(t1 ; t2)/Γ ⇓ σ1 ? b1/Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 16 / 61

Language CoLiS

A few rules – Sequence

Sequence-Normal

t1/Γ ⇓ σ1 ? b1/Γ1
b1 ∈ {True,False} t2/Γ1

⇓ σ2 ? b2/Γ2

(t1 ; t2)/Γ ⇓ σ1σ2 ? b2/Γ2

Sequence-Exception

t1/Γ ⇓ σ1 ? b1/Γ1
b1 ∈ {Fatal,Return ,Exit }

(t1 ; t2)/Γ ⇓ σ1 ? b1/Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 16 / 61

Language CoLiS

A few rules – Branching

Branching-True
t1/Γ ⇓ σ1 ? b1/Γ1

b1 = True t2/Γ2
⇓ σ2 ? b2/Γ2

(if t1 then t2 else t3)/Γ ⇓ σ1σ2 ? b2/Γ2

Branching-False
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {False,Fatal} t3/Γ3
⇓ σ3 ? b3/Γ3

(if t1 then t2 else t3)/Γ ⇓ σ1σ3 ? b3/Γ3

Branching-Exception
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {Return ,Exit }
(if t1 then t2 else t3)/Γ ⇓ σ1 ? b1/Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 17 / 61

Language CoLiS

A few rules – Branching

Branching-True
t1/Γ ⇓ σ1 ? b1/Γ1

b1 = True t2/Γ2
⇓ σ2 ? b2/Γ2

(if t1 then t2 else t3)/Γ ⇓ σ1σ2 ? b2/Γ2

Branching-False
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {False,Fatal} t3/Γ3
⇓ σ3 ? b3/Γ3

(if t1 then t2 else t3)/Γ ⇓ σ1σ3 ? b3/Γ3

Branching-Exception
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {Return ,Exit }
(if t1 then t2 else t3)/Γ ⇓ σ1 ? b1/Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 17 / 61

Language CoLiS

A few rules – Branching

Branching-True
t1/Γ ⇓ σ1 ? b1/Γ1

b1 = True t2/Γ2
⇓ σ2 ? b2/Γ2

(if t1 then t2 else t3)/Γ ⇓ σ1σ2 ? b2/Γ2

Branching-False
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {False,Fatal} t3/Γ3
⇓ σ3 ? b3/Γ3

(if t1 then t2 else t3)/Γ ⇓ σ1σ3 ? b3/Γ3

Branching-Exception
t1/Γ ⇓ σ1 ? b1/Γ1

b1 ∈ {Return ,Exit }
(if t1 then t2 else t3)/Γ ⇓ σ1 ? b1/Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 17 / 61

Language CoLiS

How behaviours are handled

T
ru
e

Fa
ls
e

Fa
ta
l

R
et
ur
n

T
ru
e

R
et
ur
n

Fa
ls
e

E
xi
t

T
ru
e

E
xi
t

Fa
ls
e

Pipe Normal

Sequence Normal Exception

Test True False Exception

Function call Success Failure Success Failure Exception

Subprocess Success Failure Success Failure Success Failure

Nicolas Jeannerod VALS Seminar July 7, 2017 18 / 61

Language CoLiS

A few rules – Mutual recursion

Terms depend on string expressions:

Assignment-String
s/Γ ⇓s σ ? β/Γ′

x := s/Γ ⇓ “” ? β/Γ′[senv=Γ′.senv[x←σ]]

and string fragments depend on terms:

String-Subprocess
t/Γ ⇓ σ ? b/Γ′

t/Γ ⇓sf σ ? b/Γ′

b := True if b ∈ {True,Return True,Exit True}
| Fatal otherwise

Nicolas Jeannerod VALS Seminar July 7, 2017 19 / 61

Language CoLiS

A few rules – Mutual recursion

Terms depend on string expressions:

Assignment-String
s/Γ ⇓s σ ? β/Γ′

x := s/Γ ⇓ “” ? β/Γ′[senv=Γ′.senv[x←σ]]

and string fragments depend on terms:

String-Subprocess
t/Γ ⇓ σ ? b/Γ′

t/Γ ⇓sf σ ? b/Γ′

b := True if b ∈ {True,Return True,Exit True}
| Fatal otherwise

Nicolas Jeannerod VALS Seminar July 7, 2017 19 / 61

Language Mechanised version

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 20 / 61

Language Mechanised version

Why3

Platform for deductive program verification;

WhyML: language for both specification and programming;

Standard library:

integer arithmetic,
boolean operations,
maps,
etc.;

Support of imperative traits:

references,
exceptions,
while and for loops;

Proof obligations are given to external theorem provers;

Possibility to extract WhyML code to OCaml.

Nicolas Jeannerod VALS Seminar July 7, 2017 21 / 61

Language Mechanised version

Why3

Platform for deductive program verification;

WhyML: language for both specification and programming;

Standard library:

integer arithmetic,
boolean operations,
maps,
etc.;

Support of imperative traits:

references,
exceptions,
while and for loops;

Proof obligations are given to external theorem provers;

Possibility to extract WhyML code to OCaml.

Nicolas Jeannerod VALS Seminar July 7, 2017 21 / 61

Language Mechanised version

Why3

Platform for deductive program verification;

WhyML: language for both specification and programming;

Standard library:

integer arithmetic,
boolean operations,
maps,
etc.;

Support of imperative traits:

references,
exceptions,
while and for loops;

Proof obligations are given to external theorem provers;

Possibility to extract WhyML code to OCaml.

Nicolas Jeannerod VALS Seminar July 7, 2017 21 / 61

Language Mechanised version

Why3

Platform for deductive program verification;

WhyML: language for both specification and programming;

Standard library:

integer arithmetic,
boolean operations,
maps,
etc.;

Support of imperative traits:

references,
exceptions,
while and for loops;

Proof obligations are given to external theorem provers;

Possibility to extract WhyML code to OCaml.

Nicolas Jeannerod VALS Seminar July 7, 2017 21 / 61

Language Mechanised version

Why3

Platform for deductive program verification;

WhyML: language for both specification and programming;

Standard library:

integer arithmetic,
boolean operations,
maps,
etc.;

Support of imperative traits:

references,
exceptions,
while and for loops;

Proof obligations are given to external theorem provers;

Possibility to extract WhyML code to OCaml.

Nicolas Jeannerod VALS Seminar July 7, 2017 21 / 61

Language Mechanised version

Why3

Platform for deductive program verification;

WhyML: language for both specification and programming;

Standard library:

integer arithmetic,
boolean operations,
maps,
etc.;

Support of imperative traits:

references,
exceptions,
while and for loops;

Proof obligations are given to external theorem provers;

Possibility to extract WhyML code to OCaml.

Nicolas Jeannerod VALS Seminar July 7, 2017 21 / 61

Language Mechanised version

Syntax

type term =

| TTrue

| TFalse

| TFatal

| TReturn term

| TExit term

| TAsString svar sexpr

| TAsList lvar lexpr

| TSeq term term

| TIf term term term

| TFor svar lexpr term

| TWhile term term

| TProcess term

| TCall lexpr

| TShift

| TPipe term term

with sexpr = list sfrag

with sfrag =

| SLiteral string

| SVar svar

| SArg int

| SProcess term

with lexpr = list lfrag

with lfrag =

| LSingleton sexpr

| LSplit sexpr

| LVar lvar

Nicolas Jeannerod VALS Seminar July 7, 2017 22 / 61

Language Mechanised version

Semantic judgments

inductive eval_term term context

string behaviour context

with eval_sexpr sexpr context

string bool context

with eval_sfrag sfrag context

string (option bool) context

with eval_lexpr lexpr context

(list string) bool context

with eval_lfrag lfrag context

(list string) (option bool) context

Nicolas Jeannerod VALS Seminar July 7, 2017 23 / 61

Language Mechanised version

A few rules – Sequence

| EvalT_Seq_Normal : forall t1 Γ σ1 b1 Γ1 t2 σ2 b2 Γ2.

eval_term t1 Γ σ1 (BNormal b1) Γ1 ->

eval_term t2 Γ1 σ2 b2 Γ2 ->

eval_term (TSeq t1 t2) Γ (concat σ1 σ2) b2 Γ2

| EvalT_Seq_Error : forall t1 Γ σ1 b1 Γ1 t2.

eval_term t1 Γ σ1 b1 Γ1 ->

(match b1 with BNormal _ -> false | _ -> true end) ->

eval_term (TSeq t1 t2) Γ σ1 b1 Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 24 / 61

Language Mechanised version

A few rules – Sequence

| EvalT_Seq_Normal : forall t1 Γ σ1 b1 Γ1 t2 σ2 b2 Γ2.

eval_term t1 Γ σ1 (BNormal b1) Γ1 ->

eval_term t2 Γ1 σ2 b2 Γ2 ->

eval_term (TSeq t1 t2) Γ (concat σ1 σ2) b2 Γ2

| EvalT_Seq_Error : forall t1 Γ σ1 b1 Γ1 t2.

eval_term t1 Γ σ1 b1 Γ1 ->

(match b1 with BNormal _ -> false | _ -> true end) ->

eval_term (TSeq t1 t2) Γ σ1 b1 Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 24 / 61

Language Mechanised version

A few rules – Branching

| EvalT_If_True : forall t1 Γ σ1 Γ1 t2 σ2 b2 Γ2 t3.

eval_term t1 Γ σ1 (BNormal True) Γ1 ->

eval_term t2 Γ1 σ2 b2 Γ2 ->

eval_term (TIf t1 t2 t3) Γ (concat σ1 σ2) b2 Γ2

| EvalT_If_False : forall t1 Γ σ1 b1 Γ1 t3 σ3 b3 Γ3 t2.

eval_term t1 Γ σ1 b1 Γ1 ->

(match b1 with BNormal False | BFatal -> true | _ -> false end) ->

eval_term t3 Γ1 σ3 b3 Γ3 ->

eval_term (TIf t1 t2 t3) Γ (concat σ1 σ3) b3 Γ3

| EvalT_If_Transmit : forall t1 Γ σ1 b1 Γ1 t2 t3.

eval_term t1 Γ σ1 b1 Γ1 ->

(match b1 with BReturn _ | BExit _ -> true | _ -> false end) ->

eval_term (TIf t1 t2 t3) Γ σ1 b1 Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 25 / 61

Language Mechanised version

A few rules – Branching

| EvalT_If_True : forall t1 Γ σ1 Γ1 t2 σ2 b2 Γ2 t3.

eval_term t1 Γ σ1 (BNormal True) Γ1 ->

eval_term t2 Γ1 σ2 b2 Γ2 ->

eval_term (TIf t1 t2 t3) Γ (concat σ1 σ2) b2 Γ2

| EvalT_If_False : forall t1 Γ σ1 b1 Γ1 t3 σ3 b3 Γ3 t2.

eval_term t1 Γ σ1 b1 Γ1 ->

(match b1 with BNormal False | BFatal -> true | _ -> false end) ->

eval_term t3 Γ1 σ3 b3 Γ3 ->

eval_term (TIf t1 t2 t3) Γ (concat σ1 σ3) b3 Γ3

| EvalT_If_Transmit : forall t1 Γ σ1 b1 Γ1 t2 t3.

eval_term t1 Γ σ1 b1 Γ1 ->

(match b1 with BReturn _ | BExit _ -> true | _ -> false end) ->

eval_term (TIf t1 t2 t3) Γ σ1 b1 Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 25 / 61

Language Mechanised version

A few rules – Branching

| EvalT_If_True : forall t1 Γ σ1 Γ1 t2 σ2 b2 Γ2 t3.

eval_term t1 Γ σ1 (BNormal True) Γ1 ->

eval_term t2 Γ1 σ2 b2 Γ2 ->

eval_term (TIf t1 t2 t3) Γ (concat σ1 σ2) b2 Γ2

| EvalT_If_False : forall t1 Γ σ1 b1 Γ1 t3 σ3 b3 Γ3 t2.

eval_term t1 Γ σ1 b1 Γ1 ->

(match b1 with BNormal False | BFatal -> true | _ -> false end) ->

eval_term t3 Γ1 σ3 b3 Γ3 ->

eval_term (TIf t1 t2 t3) Γ (concat σ1 σ3) b3 Γ3

| EvalT_If_Transmit : forall t1 Γ σ1 b1 Γ1 t2 t3.

eval_term t1 Γ σ1 b1 Γ1 ->

(match b1 with BReturn _ | BExit _ -> true | _ -> false end) ->

eval_term (TIf t1 t2 t3) Γ σ1 b1 Γ1

Nicolas Jeannerod VALS Seminar July 7, 2017 25 / 61

Language Mechanised version

A few rules – Mutual recursion

| EvalT_AsString : forall s Γ σ β Γ’ Γ’’ xs.
eval_sexpr s Γ σ β Γ’ ->

Γ’’ = update_senv Γ’ xs σ ->

eval_term (TAsString xs s) Γ empty_string

(if β then BNormal True else BFatal) Γ’’

| EvalSF_Process : forall t Γ σ b Γ’.
eval_term t Γ σ b Γ’ ->

eval_sfrag_opt (SProcess t) Γ σ
(Some (match b with BNormal True | BReturn True | BExit True -> True | _ -> False end))

{Γ with c_fs = Γ’.c_fs ; c_input = Γ’.c_input}

Nicolas Jeannerod VALS Seminar July 7, 2017 26 / 61

Language Mechanised version

A few rules – Mutual recursion

| EvalT_AsString : forall s Γ σ β Γ’ Γ’’ xs.
eval_sexpr s Γ σ β Γ’ ->

Γ’’ = update_senv Γ’ xs σ ->

eval_term (TAsString xs s) Γ empty_string

(if β then BNormal True else BFatal) Γ’’

| EvalSF_Process : forall t Γ σ b Γ’.
eval_term t Γ σ b Γ’ ->

eval_sfrag_opt (SProcess t) Γ σ
(Some (match b with BNormal True | BReturn True | BExit True -> True | _ -> False end))

{Γ with c_fs = Γ’.c_fs ; c_input = Γ’.c_input}

Nicolas Jeannerod VALS Seminar July 7, 2017 26 / 61

A sound interpreter Why?

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 27 / 61

A sound interpreter Why?

Why?

For fun;

Helps detecting the potential mistakes;

We can compare the observational behaviour of our interpreter with
known implementations of the POSIX Shell;

It gives us a way to test an automated translation from Shell to
CoLiS.

Nicolas Jeannerod VALS Seminar July 7, 2017 28 / 61

A sound interpreter Why?

Why?

For fun;

Helps detecting the potential mistakes;

We can compare the observational behaviour of our interpreter with
known implementations of the POSIX Shell;

It gives us a way to test an automated translation from Shell to
CoLiS.

Nicolas Jeannerod VALS Seminar July 7, 2017 28 / 61

A sound interpreter Why?

Why?

For fun;

Helps detecting the potential mistakes;

We can compare the observational behaviour of our interpreter with
known implementations of the POSIX Shell;

It gives us a way to test an automated translation from Shell to
CoLiS.

Nicolas Jeannerod VALS Seminar July 7, 2017 28 / 61

A sound interpreter Why?

Why?

For fun;

Helps detecting the potential mistakes;

We can compare the observational behaviour of our interpreter with
known implementations of the POSIX Shell;

It gives us a way to test an automated translation from Shell to
CoLiS.

Nicolas Jeannerod VALS Seminar July 7, 2017 28 / 61

A sound interpreter Let us see some code

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 29 / 61

A sound interpreter Let us see some code

Spirit of the code

Set of mutually recursive functions;

ML-style with imperative traits;

Fatal, Return and Exit are exceptions;

stdout is a reference.

exception EFatal context

exception EReturn (bool ,context)

exception EExit (bool ,context)

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

with interp_sexpr_aux (s: sexpr) (Γ: context) (previous: bool)

: (string , bool , context)

with interp_sfrag_aux (fs: sfrag) (Γ: context) (previous: bool)

: (string , bool , context)

...

Nicolas Jeannerod VALS Seminar July 7, 2017 30 / 61

A sound interpreter Let us see some code

Spirit of the code

Set of mutually recursive functions;

ML-style with imperative traits;

Fatal, Return and Exit are exceptions;

stdout is a reference.

exception EFatal context

exception EReturn (bool ,context)

exception EExit (bool ,context)

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

with interp_sexpr_aux (s: sexpr) (Γ: context) (previous: bool)

: (string , bool , context)

with interp_sfrag_aux (fs: sfrag) (Γ: context) (previous: bool)

: (string , bool , context)

...

Nicolas Jeannerod VALS Seminar July 7, 2017 30 / 61

A sound interpreter Let us see some code

Body – Sequence and branching

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

=

match t with

| TSeq t1 t2 ->

let (_, Γ1) = interp_term t1 Γ stdout in

interp_term t2 Γ1 stdout

| TIf t1 t2 t3 ->

let (b1, Γ1) =

try

interp_term t1 Γ stdout

with

EFatal Γ1 -> (false , Γ1)

end

in

interp_term (if b1 then t2 else t3) Γ1 stdout

Nicolas Jeannerod VALS Seminar July 7, 2017 31 / 61

A sound interpreter Let us see some code

Body – Sequence and branching

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

=

match t with

| TSeq t1 t2 ->

let (_, Γ1) = interp_term t1 Γ stdout in

interp_term t2 Γ1 stdout

| TIf t1 t2 t3 ->

let (b1, Γ1) =

try

interp_term t1 Γ stdout

with

EFatal Γ1 -> (false , Γ1)

end

in

interp_term (if b1 then t2 else t3) Γ1 stdout

Nicolas Jeannerod VALS Seminar July 7, 2017 31 / 61

A sound interpreter Let us see some code

Body – Mutual recursion

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

=

match t with

| TAsString xs s ->

let (σ, b, Γ’) = interp_sexpr s Γ in

let Γ’’ = update_senv Γ’ xs σ in

if b then (true , Γ’’) else raise (EFatal Γ’’)
...

with interp_sfrag_aux (fs: sfrag) (Γ: context) (previous: bool)

: (string , bool , context)

=

match fs with

| SProcess t ->

let (σ, b, fs, input) = interp_process t Γ in

(σ, b, {Γ with c_fs = fs; c_input = input })

...

Nicolas Jeannerod VALS Seminar July 7, 2017 32 / 61

A sound interpreter Let us see some code

Body – Mutual recursion

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

=

match t with

| TAsString xs s ->

let (σ, b, Γ’) = interp_sexpr s Γ in

let Γ’’ = update_senv Γ’ xs σ in

if b then (true , Γ’’) else raise (EFatal Γ’’)
...

with interp_sfrag_aux (fs: sfrag) (Γ: context) (previous: bool)

: (string , bool , context)

=

match fs with

| SProcess t ->

let (σ, b, fs, input) = interp_process t Γ in

(σ, b, {Γ with c_fs = fs; c_input = input })

...

Nicolas Jeannerod VALS Seminar July 7, 2017 32 / 61

A sound interpreter Let us see some code

Soundness of the interpreter

We write t/Γ 7→ σ ? b/Γ′ for: “on the input consisting of t, Γ and a
reference, the interpreter writes σ at the end of that reference and
terminates:

normally and outputs (b, Γ′);

with an exception corresponding to the behaviour b that carries Γ′.”

Theorem (Soundness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ 7→ σ ? b/Γ′

then
t/Γ ⇓ σ ? b/Γ′

Nicolas Jeannerod VALS Seminar July 7, 2017 33 / 61

A sound interpreter Let us see some code

Soundness of the interpreter

We write t/Γ 7→ σ ? b/Γ′ for: “on the input consisting of t, Γ and a
reference, the interpreter writes σ at the end of that reference and
terminates:

normally and outputs (b, Γ′);

with an exception corresponding to the behaviour b that carries Γ′.”

Theorem (Soundness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ 7→ σ ? b/Γ′

then
t/Γ ⇓ σ ? b/Γ′

Nicolas Jeannerod VALS Seminar July 7, 2017 33 / 61

A sound interpreter Let us see some code

Contract

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

diverges

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

raises { EFatal Γ’ -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ BFatal Γ’ }

raises { EReturn (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BReturn b) Γ’ }

raises { EExit (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BExit b) Γ’ }

Nicolas Jeannerod VALS Seminar July 7, 2017 34 / 61

A sound interpreter Let us see some code

Contract

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

diverges

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

raises { EFatal Γ’ -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ BFatal Γ’ }

raises { EReturn (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BReturn b) Γ’ }

raises { EExit (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BExit b) Γ’ }

Nicolas Jeannerod VALS Seminar July 7, 2017 34 / 61

A sound interpreter Proof

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 35 / 61

A sound interpreter Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

Usual fix: provide a witness as a ghost return value.

Cannot work here because of exceptions: we would need to catch
them all and all the time!

Never mind, there are provers based on superposition, let’s use them.

Nicolas Jeannerod VALS Seminar July 7, 2017 36 / 61

A sound interpreter Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

Usual fix: provide a witness as a ghost return value.

Cannot work here because of exceptions: we would need to catch
them all and all the time!

Never mind, there are provers based on superposition, let’s use them.

Nicolas Jeannerod VALS Seminar July 7, 2017 36 / 61

A sound interpreter Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

Usual fix: provide a witness as a ghost return value.

Cannot work here because of exceptions: we would need to catch
them all and all the time!

Never mind, there are provers based on superposition, let’s use them.

Nicolas Jeannerod VALS Seminar July 7, 2017 36 / 61

A sound interpreter Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

Usual fix: provide a witness as a ghost return value.

Cannot work here because of exceptions: we would need to catch
them all and all the time!

Never mind, there are provers based on superposition, let’s use them.

Nicolas Jeannerod VALS Seminar July 7, 2017 36 / 61

A sound interpreter Proof

Why it is hard

stdout is a reference:

exists σ. !stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’

Usual fix: provide a witness as a ghost return value.

Cannot work here because of exceptions: we would need to catch
them all and all the time!

Never mind, there are provers based on superposition, let’s use them.

Nicolas Jeannerod VALS Seminar July 7, 2017 36 / 61

A sound interpreter Proof

But it works!

117 proof obligations;

190s on my machine;

Uses Alt-Ergo, Z3 and E (crucial);

No Coq proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 37 / 61

A sound interpreter Proof

But it works!

117 proof obligations;

190s on my machine;

Uses Alt-Ergo, Z3 and E (crucial);

No Coq proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 37 / 61

A sound interpreter Proof

But it works!

117 proof obligations;

190s on my machine;

Uses Alt-Ergo, Z3 and E (crucial);

No Coq proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 37 / 61

A sound interpreter An other sound interpreter

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 38 / 61

A sound interpreter An other sound interpreter

An other sound interpreter

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

diverges

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

...

=

while true do

()

done

Nicolas Jeannerod VALS Seminar July 7, 2017 39 / 61

A complete interpreter Which formulation?

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 40 / 61

A complete interpreter Which formulation?

Completeness of the interpreter

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

On paper:

We have the soundness,

We can prove functionality of the predicate,

Thanks to them, we can prove the termination,

All of that gives us the completeness.

Nicolas Jeannerod VALS Seminar July 7, 2017 41 / 61

A complete interpreter Which formulation?

Completeness of the interpreter

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

On paper:

We have the soundness,

We can prove functionality of the predicate,

Thanks to them, we can prove the termination,

All of that gives us the completeness.

Nicolas Jeannerod VALS Seminar July 7, 2017 41 / 61

A complete interpreter Which formulation?

Completeness of the interpreter

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

On paper:

We have the soundness,

We can prove functionality of the predicate,

Thanks to them, we can prove the termination,

All of that gives us the completeness.

Nicolas Jeannerod VALS Seminar July 7, 2017 41 / 61

A complete interpreter Which formulation?

Completeness of the interpreter

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

On paper:

We have the soundness,

We can prove functionality of the predicate,

Thanks to them, we can prove the termination,

All of that gives us the completeness.

Nicolas Jeannerod VALS Seminar July 7, 2017 41 / 61

A complete interpreter Which formulation?

Completeness of the interpreter

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

On paper:

We have the soundness,

We can prove functionality of the predicate,

Thanks to them, we can prove the termination,

All of that gives us the completeness.

Nicolas Jeannerod VALS Seminar July 7, 2017 41 / 61

A complete interpreter Which formulation?

Completeness of the interpreter

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′: if

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

On paper:

We have the soundness,

We can prove functionality of the predicate,

Thanks to them, we can prove the termination,

All of that gives us the completeness.

Nicolas Jeannerod VALS Seminar July 7, 2017 41 / 61

A complete interpreter Which formulation?

Completeness of the interpreter – In Why3?

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′, if:

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

In Why3:

We have the soundness, but we can’t use it in the termination,

We can prove the functionality,

Thanks to it, and by re-proving the soundness on-the-fly, we can
prove the termination,

Nicolas Jeannerod VALS Seminar July 7, 2017 42 / 61

A complete interpreter Which formulation?

Completeness of the interpreter – In Why3?

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′, if:

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

In Why3:

We have the soundness, but we can’t use it in the termination,

We can prove the functionality,

Thanks to it, and by re-proving the soundness on-the-fly, we can
prove the termination,

Nicolas Jeannerod VALS Seminar July 7, 2017 42 / 61

A complete interpreter Which formulation?

Completeness of the interpreter – In Why3?

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′, if:

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

In Why3:

We have the soundness, but we can’t use it in the termination,

We can prove the functionality,

Thanks to it, and by re-proving the soundness on-the-fly, we can
prove the termination,

Nicolas Jeannerod VALS Seminar July 7, 2017 42 / 61

A complete interpreter Which formulation?

Completeness of the interpreter – In Why3?

Theorem (Completeness of the interpreter)

For all t, Γ, σ, b and Γ′, if:

t/Γ ⇓ σ ? b/Γ′

then
t/Γ 7→ σ ? b/Γ′

In Why3:

We have the soundness, but we can’t use it in the termination,

We can prove the functionality,

Thanks to it, and by re-proving the soundness on-the-fly, we can
prove the termination,

Nicolas Jeannerod VALS Seminar July 7, 2017 42 / 61

A complete interpreter Which formulation?

Functionality and termination

Theorem (Functionnality of the predicate)

For all t, Γ, σ1, σ2, b1, b2, Γ1, Γ2, if:

t/Γ ⇓ σ1 ? b1/Γ1
and t/Γ ⇓ σ2 ? b2/Γ2

then:
σ1 = σ2 and b1 = b2 and Γ1 = Γ2

Theorem (Termination of the interpreter)

For all t, Γ, σ, b, Γ′, if:
t/Γ ⇓ σ ? b/Γ′

then the interpreter terminates when given t, Γ and a reference.

Nicolas Jeannerod VALS Seminar July 7, 2017 43 / 61

A complete interpreter Which formulation?

Why we need the soundness and the functionality in the
proof of termination

Case of the sequence (with non-exceptional behaviours):

| TSeq t1 t2 ->

let (_, Γ1) = interp_term t1 Γ stdout in

interp_term t2 Γ1 stdout

We know that:

∃σbΓ′′. (t1 ; t2)/Γ ⇓ σ ? b/Γ′′

∧ (∃σ′b′Γ′. t1/Γ ⇓ σ′ ? b′/Γ′

∧ t2/Γ′ ⇓ σ ? b/Γ′′

∧ b′ ∈ {True,False})

But we need to say that that Γ′ is in fact Γ1.
Hence the need for the soundness and the functionality.

Nicolas Jeannerod VALS Seminar July 7, 2017 44 / 61

A complete interpreter Which formulation?

Why we need the soundness and the functionality in the
proof of termination

Case of the sequence (with non-exceptional behaviours):

| TSeq t1 t2 ->

let (_, Γ1) = interp_term t1 Γ stdout in

interp_term t2 Γ1 stdout

We know that:

∃σbΓ′′. (t1 ; t2)/Γ ⇓ σ ? b/Γ′′

∧ (∃σ′b′Γ′. t1/Γ ⇓ σ′ ? b′/Γ′

∧ t2/Γ′ ⇓ σ ? b/Γ′′

∧ b′ ∈ {True,False})

But we need to say that that Γ′ is in fact Γ1.
Hence the need for the soundness and the functionality.

Nicolas Jeannerod VALS Seminar July 7, 2017 44 / 61

A complete interpreter Which formulation?

Why we need the soundness and the functionality in the
proof of termination

Case of the sequence (with non-exceptional behaviours):

| TSeq t1 t2 ->

let (_, Γ1) = interp_term t1 Γ stdout in

interp_term t2 Γ1 stdout

We know that:

∃σbΓ′′. (t1 ; t2)/Γ ⇓ σ ? b/Γ′′

∧ (∃σ′b′Γ′. t1/Γ ⇓ σ′ ? b′/Γ′

∧ t2/Γ′ ⇓ σ ? b/Γ′′

∧ b′ ∈ {True,False})

But we need to say that that Γ′ is in fact Γ1.
Hence the need for the soundness and the functionality.

Nicolas Jeannerod VALS Seminar July 7, 2017 44 / 61

A complete interpreter Which formulation?

Why we need the soundness and the functionality in the
proof of termination

Case of the sequence (with non-exceptional behaviours):

| TSeq t1 t2 ->

let (_, Γ1) = interp_term t1 Γ stdout in

interp_term t2 Γ1 stdout

We know that:

∃σbΓ′′. (t1 ; t2)/Γ ⇓ σ ? b/Γ′′

∧ (∃σ′b′Γ′. t1/Γ ⇓ σ′ ? b′/Γ′

∧ t2/Γ′ ⇓ σ ? b/Γ′′

∧ b′ ∈ {True,False})

But we need to say that that Γ′ is in fact Γ1.
Hence the need for the soundness and the functionality.

Nicolas Jeannerod VALS Seminar July 7, 2017 44 / 61

A complete interpreter Which formulation?

Why we need the soundness and the functionality in the
proof of termination

Case of the sequence (with non-exceptional behaviours):

| TSeq t1 t2 ->

let (_, Γ1) = interp_term t1 Γ stdout in

interp_term t2 Γ1 stdout

We know that:

∃σbΓ′′. (t1 ; t2)/Γ ⇓ σ ? b/Γ′′

∧ (∃σ′b′Γ′. t1/Γ ⇓ σ′ ? b′/Γ′

∧ t2/Γ′ ⇓ σ ? b/Γ′′

∧ b′ ∈ {True,False})

But we need to say that that Γ′ is in fact Γ1.
Hence the need for the soundness and the functionality.

Nicolas Jeannerod VALS Seminar July 7, 2017 44 / 61

A complete interpreter Which formulation?

What do we need, then?

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

requires { exists σ b Γ’. eval_term t Γ σ b Γ’ }

variant { ... }

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

...

Now the question is: what variant are we going to use?

Nicolas Jeannerod VALS Seminar July 7, 2017 45 / 61

A complete interpreter Which formulation?

What do we need, then?

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) : (bool , context)

requires { exists σ b Γ’. eval_term t Γ σ b Γ’ }

variant { ... }

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ }

...

Now the question is: what variant are we going to use?

Nicolas Jeannerod VALS Seminar July 7, 2017 45 / 61

A complete interpreter Heights and sizes

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 46 / 61

A complete interpreter Heights and sizes

Let us find a variant

Terms are structurally decreasing? Wrong.

t1/Γ ⇓ σ1 ? b1/Γ1
b1 = True

t2/Γ ⇓ σ2 ? b2/Γ2
b2 ∈ {True,False}

(while t1 do t2)/Γ2
⇓ σ3 ? b3/Γ3

(while t1 do t2)/Γ ⇓ σ1σ2σ3 ? b3/Γ3

Proofs are structurally decreasing?
True, but we can’t manipulate them in Why3.

Can we use the height or the size of the proof tree?

Nicolas Jeannerod VALS Seminar July 7, 2017 47 / 61

A complete interpreter Heights and sizes

Let us find a variant

Terms are structurally decreasing? Wrong.

t1/Γ ⇓ σ1 ? b1/Γ1
b1 = True

t2/Γ ⇓ σ2 ? b2/Γ2
b2 ∈ {True,False}

(while t1 do t2)/Γ2
⇓ σ3 ? b3/Γ3

(while t1 do t2)/Γ ⇓ σ1σ2σ3 ? b3/Γ3

Proofs are structurally decreasing?
True, but we can’t manipulate them in Why3.

Can we use the height or the size of the proof tree?

Nicolas Jeannerod VALS Seminar July 7, 2017 47 / 61

A complete interpreter Heights and sizes

Let us find a variant

Terms are structurally decreasing? Wrong.

t1/Γ ⇓ σ1 ? b1/Γ1
b1 = True

t2/Γ ⇓ σ2 ? b2/Γ2
b2 ∈ {True,False}

(while t1 do t2)/Γ2
⇓ σ3 ? b3/Γ3

(while t1 do t2)/Γ ⇓ σ1σ2σ3 ? b3/Γ3

Proofs are structurally decreasing?
True, but we can’t manipulate them in Why3.

Can we use the height or the size of the proof tree?

Nicolas Jeannerod VALS Seminar July 7, 2017 47 / 61

A complete interpreter Heights and sizes

Let us find a variant

Terms are structurally decreasing? Wrong.

t1/Γ ⇓ σ1 ? b1/Γ1
b1 = True

t2/Γ ⇓ σ2 ? b2/Γ2
b2 ∈ {True,False}

(while t1 do t2)/Γ2
⇓ σ3 ? b3/Γ3

(while t1 do t2)/Γ ⇓ σ1σ2σ3 ? b3/Γ3

Proofs are structurally decreasing?
True, but we can’t manipulate them in Why3.

Can we use the height or the size of the proof tree?

Nicolas Jeannerod VALS Seminar July 7, 2017 47 / 61

A complete interpreter Heights and sizes

Let us find a variant

Terms are structurally decreasing? Wrong.

t1/Γ ⇓ σ1 ? b1/Γ1
b1 = True

t2/Γ ⇓ σ2 ? b2/Γ2
b2 ∈ {True,False}

(while t1 do t2)/Γ2
⇓ σ3 ? b3/Γ3

(while t1 do t2)/Γ ⇓ σ1σ2σ3 ? b3/Γ3

Proofs are structurally decreasing?
True, but we can’t manipulate them in Why3.

Can we use the height or the size of the proof tree?

Nicolas Jeannerod VALS Seminar July 7, 2017 47 / 61

A complete interpreter Heights and sizes

Why it does not work – 1

Superposition provers are bad with arithmetic.

Patch: replace it with simple successor arithmetic.

But we would still need to talk about:

addition and subtraction (for sizes);

maximum and inequalities (for heights).

Nicolas Jeannerod VALS Seminar July 7, 2017 48 / 61

A complete interpreter Heights and sizes

Why it does not work – 1

Superposition provers are bad with arithmetic.

Patch: replace it with simple successor arithmetic.

But we would still need to talk about:

addition and subtraction (for sizes);

maximum and inequalities (for heights).

Nicolas Jeannerod VALS Seminar July 7, 2017 48 / 61

A complete interpreter Heights and sizes

Why it does not work – 1

Superposition provers are bad with arithmetic.

Patch: replace it with simple successor arithmetic.

But we would still need to talk about:

addition and subtraction (for sizes);

maximum and inequalities (for heights).

Nicolas Jeannerod VALS Seminar July 7, 2017 48 / 61

A complete interpreter Heights and sizes

Why it does not work – 2

When we know the size of a proof, we cannot deduce from it the
size of the proofs of the premises.

Patch: return the “unused” size.

But:

Exceptions would have to carry that number too;

We would have to catch all the exceptions to update that number.

Nicolas Jeannerod VALS Seminar July 7, 2017 49 / 61

A complete interpreter Heights and sizes

Why it does not work – 2

When we know the size of a proof, we cannot deduce from it the
size of the proofs of the premises.

Patch: return the “unused” size.

But:

Exceptions would have to carry that number too;

We would have to catch all the exceptions to update that number.

Nicolas Jeannerod VALS Seminar July 7, 2017 49 / 61

A complete interpreter Heights and sizes

Why it does not work – 2

When we know the size of a proof, we cannot deduce from it the
size of the proofs of the premises.

Patch: return the “unused” size.

But:

Exceptions would have to carry that number too;

We would have to catch all the exceptions to update that number.

Nicolas Jeannerod VALS Seminar July 7, 2017 49 / 61

A complete interpreter Heights and sizes

Why it does not work – 3

We cannot deduce from the height of a proof the heights of the
premises (only an upper bound).

Patch: use inequalities in the pre- and post-conditions or in the predicate.

But it means more work:

to define the pre- and post-conditions or the predicate;

for the provers.

Nicolas Jeannerod VALS Seminar July 7, 2017 50 / 61

A complete interpreter Heights and sizes

Why it does not work – 3

We cannot deduce from the height of a proof the heights of the
premises (only an upper bound).

Patch: use inequalities in the pre- and post-conditions or in the predicate.

But it means more work:

to define the pre- and post-conditions or the predicate;

for the provers.

Nicolas Jeannerod VALS Seminar July 7, 2017 50 / 61

A complete interpreter Heights and sizes

Why it does not work – 3

We cannot deduce from the height of a proof the heights of the
premises (only an upper bound).

Patch: use inequalities in the pre- and post-conditions or in the predicate.

But it means more work:

to define the pre- and post-conditions or the predicate;

for the provers.

Nicolas Jeannerod VALS Seminar July 7, 2017 50 / 61

A complete interpreter Skeletons

Table of Contents

1. Language
Elements of Shell
CoLiS
Mechanised version

2. A sound interpreter
Why?
Let us see some code
Proof
An other sound interpreter

3. A complete interpreter
Which formulation?
Heights and sizes
Skeletons

Nicolas Jeannerod VALS Seminar July 7, 2017 51 / 61

A complete interpreter Skeletons

Back to square one

We still want to say that proofs are structurally decreasing.

We add a skeleton type:

type skeleton =

| S0

| S1 skeleton

| S2 skeleton skeleton

| S3 skeleton skeleton skeleton

It represents the “shape” of the proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 52 / 61

A complete interpreter Skeletons

Back to square one

We still want to say that proofs are structurally decreasing.

We add a skeleton type:

type skeleton =

| S0

| S1 skeleton

| S2 skeleton skeleton

| S3 skeleton skeleton skeleton

It represents the “shape” of the proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 52 / 61

A complete interpreter Skeletons

Back to square one

We still want to say that proofs are structurally decreasing.

We add a skeleton type:

type skeleton =

| S0

| S1 skeleton

| S2 skeleton skeleton

| S3 skeleton skeleton skeleton

It represents the “shape” of the proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 52 / 61

A complete interpreter Skeletons

Put them everywhere – In the predicate

inductive eval_term term context

string behaviour context skeleton =

| EvalT_Seq_Normal : forall t1 Γ σ1 b1 Γ1 t2 σ2 b2 Γ2 sk1 sk2.

eval_term t1 Γ σ1 (BNormal b1) Γ1 sk1 ->

eval_term t2 Γ1 σ2 b2 Γ2 sk2 ->

eval_term (TSeq t1 t2) Γ (concat σ1 σ2) b2 Γ2 (S2 sk1 sk2)

| EvalT_Seq_Error : forall t1 Γ σ1 b1 Γ1 t2 sk.

eval_term t1 Γ σ1 b1 Γ1 sk ->

(match b1 with BNormal _ -> false | _ -> true end) ->

eval_term (TSeq t1 t2) Γ σ1 b1 Γ1 (S1 sk)

Nicolas Jeannerod VALS Seminar July 7, 2017 53 / 61

A complete interpreter Skeletons

Put them everywhere – In the contract

let rec interp_term (t: term) (Γ: context)

(stdout: ref string) (ghost sk: skeleton)

: (bool , context)

requires { exists s b g’. eval_term t g s b g’ sk }

variant { sk }

returns { (b, Γ’) -> exists σ.
!stdout = concat (old !stdout) σ
/\ eval_term t Γ σ (BNormal b) Γ’ sk }

Nicolas Jeannerod VALS Seminar July 7, 2017 54 / 61

A complete interpreter Skeletons

Define some helpers

let ghost skeleton12 (sk: skeleton)

requires { match sk with

| S1 _ | S2 _ _ -> true

| _ -> false

end }

ensures { match sk with

| S1 sk1 | S2 sk1 _ -> result = sk1

| _ -> false

end }

= match sk with

| S1 sk1 | S2 sk1 _ -> sk1

| _ -> absurd

end

Nicolas Jeannerod VALS Seminar July 7, 2017 55 / 61

A complete interpreter Skeletons

Define some helpers

let ghost skeleton12 (sk: skeleton)

requires { match sk with S1 _ | S2 _ _ -> true | _ -> false end }

ensures { match sk with S1 sk1 | S2 sk1 _ -> result = sk1 | _ -> false end }

= match sk with S1 sk1 | S2 sk1 _ -> sk1 | _ -> absurd end

The following:

let ghost sk1 = skeleton12 sk in

reads: “We know that sk can only have one or two children and we name
the first one sk1.”

Nicolas Jeannerod VALS Seminar July 7, 2017 56 / 61

A complete interpreter Skeletons

Define some helpers

let ghost skeleton12 (sk: skeleton)

requires { match sk with S1 _ | S2 _ _ -> true | _ -> false end }

ensures { match sk with S1 sk1 | S2 sk1 _ -> result = sk1 | _ -> false end }

= match sk with S1 sk1 | S2 sk1 _ -> sk1 | _ -> absurd end

The following:

let ghost sk1 = skeleton12 sk in

reads: “We know that sk can only have one or two children and we name
the first one sk1.”

Nicolas Jeannerod VALS Seminar July 7, 2017 56 / 61

A complete interpreter Skeletons

Put them everywhere – In the code

| TSeq t1 t2 ->

let ghost sk1 = skeleton12 sk in

let (_, Γ1) = interp_term t1 Γ stdout sk1 in

let ghost (_, sk2) = skeleton2 sk in

interp_term t2 Γ1 stdout sk2

| TIf t1 t2 t3 ->

let (b1, Γ1) =

try

let ghost sk1 = skeleton12 sk in

interp_term t1 Γ stdout sk1

with

EFatal Γ’ -> (false , Γ’)
end

in

let ghost (_, sk2) = skeleton2 sk in

interp_term (if b1 then t2 else t3) Γ1 stdout sk2

Nicolas Jeannerod VALS Seminar July 7, 2017 57 / 61

A complete interpreter Skeletons

Put them everywhere – In the code

| TSeq t1 t2 ->

let ghost sk1 = skeleton12 sk in

let (_, Γ1) = interp_term t1 Γ stdout sk1 in

let ghost (_, sk2) = skeleton2 sk in

interp_term t2 Γ1 stdout sk2

| TIf t1 t2 t3 ->

let (b1, Γ1) =

try

let ghost sk1 = skeleton12 sk in

interp_term t1 Γ stdout sk1

with

EFatal Γ’ -> (false , Γ’)
end

in

let ghost (_, sk2) = skeleton2 sk in

interp_term (if b1 then t2 else t3) Γ1 stdout sk2

Nicolas Jeannerod VALS Seminar July 7, 2017 57 / 61

A complete interpreter Skeletons

And it’s all green!

Nicolas Jeannerod VALS Seminar July 7, 2017 58 / 61

A complete interpreter Skeletons

And it’s all green!

233 proof obligations;

510s on my machine;

Uses Alt-Ergo, Z3 and E;

Still no Coq proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 59 / 61

A complete interpreter Skeletons

And it’s all green!

233 proof obligations;

510s on my machine;

Uses Alt-Ergo, Z3 and E;

Still no Coq proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 59 / 61

A complete interpreter Skeletons

And it’s all green!

233 proof obligations;

510s on my machine;

Uses Alt-Ergo, Z3 and E;

Still no Coq proof.

Nicolas Jeannerod VALS Seminar July 7, 2017 59 / 61

A complete interpreter Skeletons

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types (because
there is now a common structurally decreasing value);

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod VALS Seminar July 7, 2017 60 / 61

A complete interpreter Skeletons

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types (because
there is now a common structurally decreasing value);

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod VALS Seminar July 7, 2017 60 / 61

A complete interpreter Skeletons

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types (because
there is now a common structurally decreasing value);

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod VALS Seminar July 7, 2017 60 / 61

A complete interpreter Skeletons

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types (because
there is now a common structurally decreasing value);

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod VALS Seminar July 7, 2017 60 / 61

A complete interpreter Skeletons

Other things about skeletons

Generalisable, if we want more than the shape;

Help in writing recursion in case of mutually recursive types (because
there is now a common structurally decreasing value);

Can really be added automatically to inductive predicates;

Works because:

the order of the premises is the order of the execution,
the proof tree looks pretty much like the recursive calls tree.

Nicolas Jeannerod VALS Seminar July 7, 2017 60 / 61

Thank you for your attention!

Questions? Comments? Suggestions?

Claude Marché, Nicolas Jeannerod and Ralf Treinen
A Formally Verified Interpreter for a Shell-like Programming Language
VSTTE, July 2017

Nicolas Jeannerod VALS Seminar July 7, 2017 61 / 61

	Language
	Elements of Shell
	CoLiS
	Mechanised version

	A sound interpreter
	Why?
	Let us see some code
	Proof
	An other sound interpreter

	A complete interpreter
	Which formulation?
	Heights and sizes
	Skeletons

	Appendix

