A Formally Verified Interpreter for a Shell-like Programming Language

Claude Marché Nicolas Jeannerod Ralf Treinen

VSTTE, July 22, 2017

General goal

The CoLiS project. "Correctness of Linux Scripts" Goal: Apply verification techniques to shell scripts in the Debian packages

General goal

The CoLiS project. "Correctness of Linux Scripts" Goal: Apply verification techniques to shell scripts in the Debian packages

General goal

The CoLiS project. "Correctness of Linux Scripts"
Goal: Apply verification techniques to shell scripts in the Debian packages

```
set -e
eval "if true; then cmd='echo foo'; fi"
( cmd="$cmd bar" )
exit 1 | $cmd
"$cmd"
```


Big picture

Shell

Formal methods

Big picture

Shell

Big picture

Big picture

Formal methods

Big picture

Formal methods

Big picture

Formal methods

Table of Contents

1. Language

- CoLiS
- Mechanised version

2. Sound and complete interpreter

- Let us see some code
- Soundness
- Completeness
- Looking for a variant...
- Skeletons

Table of Contents

```
1. Language
- CoLiS
- Mechanised version
```


2. Sound and complete interpreter
 - Let us see some code
 - Soundness
 - Completeness
 - Looking for a variant...
 - Skeletons

Requirements

- Intermediate language (not a replacement of Shell);
- Clean;
- With formal syntax and semantics;
- Statically typed: strings and lists;
- Variables and functions explicitely declared in a header;
- Dangerous structures made more explicit.

However, automatic translation from reasonnable Shell must be possible.

Requirements

- Intermediate language (not a replacement of Shell);
- Clean;
- With formal syntax and semantics;
- Statically typed: strings and lists;
- Variables and functions explicitely declared in a header;
- Dangerous structures made more explicit.

However, automatic translation from reasonnable Shell must be possible.

Requirements

- Intermediate language (not a replacement of Shell);
- Clean;
- With formal syntax and semantics;
- Statically typed: strings and lists;
- Variables and functions explicitely declared in a header;
- Dangerous structures made more explicit.

Requirements

- Intermediate language (not a replacement of Shell);
- Clean;
- With formal syntax and semantics;
- Statically typed: strings and lists;
- Variables and functions explicitely declared in a header;
- Dangerous structures made more explicit.

However, automatic translation from reasonnable Shell must be possible.

A glimpse of the language

```
fruits="banana apple .."
{
    for fruit in $fruits
    do
        echo "$fruit"
    done
} | {
    while read line
    do
        echo "- $line"
    done
}
```

```
var fruits : list
var fruit : string
var line : string
begin
    pipe
        for fruit in [fruits]
        do
        done
    into
        while call [ 'read' ; 'line' ]
        do
    end
end
```


A glimpse of the language

```
var fruits : list
var fruit : string
var line : string
begin
    fruits ::= [ 'banana' ; 'apple' ; .. ]
    pipe
        for fruit in [fruits]
        do
            call [ 'echo' ; {fruit} ] ;
        done
    into
        while call [ 'read' ; 'line' ]
        do
            call [ 'echo' ; {'- ', line} ] ;
    end
end
```


How behaviours are handled

Interactions between Do-While and Fatal

DoWhile-Test-Fatal
$\underline{t_{1 / \Gamma} \Downarrow \sigma_{1} \star \text { True }_{/ \Gamma_{1}} \quad t_{2 / \Gamma_{1}} \Downarrow \sigma_{2} \star \text { Fatal }_{/ \Gamma_{2}}}$
do t_{1} while $t_{2 / \Gamma} \Downarrow \sigma_{1} \sigma_{2} \star \operatorname{True}_{/ \Gamma_{2}}$

DoWhile-Body-Fatal $t_{1 / \Gamma} \Downarrow \sigma_{1} \star \mathrm{Fatal}_{/ \Gamma_{1}}$
do t_{1} while $t_{2 / \Gamma ~}^{l v} \sigma_{1} \star$ Fatal $/ \Gamma_{1}$

Interactions between Do-While and Fatal

DoWhile-Test-Fatal
$\underline{t_{1 / \Gamma} \Downarrow \sigma_{1} \star \text { True }_{/ \Gamma_{1}} \quad t_{2 / \Gamma_{1}} \Downarrow \sigma_{2} \star \text { Fatal }_{/ \Gamma_{2}}}$ do t_{1} while $t_{2 / \Gamma} \Downarrow \sigma_{1} \sigma_{2} \star \operatorname{True}_{/ \Gamma_{2}}$

DoWhile-Body-Fatal
$t_{1 / \Gamma} \Downarrow \sigma_{1} \star$ Fatal $_{/ \Gamma_{1}}$
do t_{1} while $t_{2 / \Gamma} \Downarrow \sigma_{1} \star$ Fatal $_{/ \Gamma_{1}}$

Table of Contents

1. Language

- CoLiS
- Mechanised version

2. Sound and complete interpreter
 - Let us see some code
 - Soundness
 - Completeness
 - Looking for a variant...
 - Skeletons

Why3

- Deductive verification platform;
- WhyML: language for both specification and programming;
- Standard library:
- integer arithmetic,
- boolean operations,
- maps,
- etc.;
- Native support of imperative features:
- references,
- exceptions,
- while and for loops;
- Proof obligations are given to external theorem provers;
- Possibility to extract WhyMI code to OCaml

Why3

- Deductive verification platform;
- WhyML: language for both specification and programming;
- Standard library:
- integer arithmetic,
- boolean operations,
- maps,
- etc.;
- Native support of imperative features:
- references,
- exceptions,
- while and for loops;
- Proof obligations are given to external theorem provers;
- Dossibility to extract MMyMMI code to OCaml.

Why3

- Deductive verification platform;
- WhyML: language for both specification and programming;
- Standard library:
- integer arithmetic,
- boolean operations,
- maps,
- etc.;
- Native support of imperative features:
- references,
- exceptions,
- while and for loops;
- Proof obligations are given to external theorem provers;
- Possibility to extract M/hyMI code to OCaml

Why3

- Deductive verification platform;
- WhyML: language for both specification and programming;
- Standard library:
- integer arithmetic,
- boolean operations,
- maps,
- etc.;
- Native support of imperative features:
- references,
- exceptions,
- while and for loops;
- Proof obligations are given to external theorem provers;
- Possibility to extract WhyML code to OCaml

Why3

- Deductive verification platform;
- WhyML: language for both specification and programming;
- Standard library:
- integer arithmetic,
- boolean operations,
- maps,
- etc.;
- Native support of imperative features:
- references,
- exceptions,
- while and for loops;
- Proof obligations are given to external theorem provers;
- Possibility to extract WhyML code to OCaml.

Why3

- Deductive verification platform;
- WhyML: language for both specification and programming;
- Standard library:
- integer arithmetic,
- boolean operations,
- maps,
- etc.;
- Native support of imperative features:
- references,
- exceptions,
- while and for loops;
- Proof obligations are given to external theorem provers;
- Possibility to extract WhyML code to OCaml.

Syntax

```
type term=
    | TTrue
    | TFalse
    | TFatal
    | TReturn term
    | TExit term
    | TAsString svar sexpr
    | TAsList lvar lexpr
    | TSeq term term
    | TIf term term term
    | TFor svar lexpr term
    | TDoWhile term term
    | TProcess term
    | TCall lexpr
    | TShift
    | TPipe term term
```


Semantic judgments（excerpt）

```
inductive eval_term term context
                        string behaviour context
| EvalT_DoWhile_False : forall t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{}\mp@subsup{b}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{3}{}\mp@subsup{\sigma}{3}{}\mp@subsup{b}{3}{}\mp@subsup{\Gamma}{3}{}\mp@subsup{t}{2}{}
eval_term t [ Г \sigma1 (BNormal b}\mp@subsup{b}{1}{})\mp@subsup{\Gamma}{1}{} ->
eval_term t2 \Gamma }\mp@subsup{|}{2}{}\mp@subsup{\sigma}{2}{}\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{\prime->
(match b with BNormal False | BFatal -> true | _ -> false end
eval_term (TDoWhile t t t ) 「 (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{}\mathrm{ ) (BNormal b
| EvalT_DoWhile_Exn_Body : forall t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{}\mp@subsup{b}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{2}{}
eval_term t \ 「 }\mp@subsup{\sigma}{1}{}\mp@subsup{b}{1}{}\mp@subsup{\Gamma}{1}{}\mathrm{ ->
(match b with BNormal _ -> false | _ -> true end) ->
eval_term (TDoWhile t t t ) 「 \sigma 斻 Г 
```


Table of Contents

- CoLiS
- Mechanised version

2. Sound and complete interpreter

- Let us see some code
- Soundness
- Completeness
- Looking for a variant...
- Skeletons

Interpreter (excerpt)

```
let rec interp_term (t: term) (\Gamma: context)
    (stdout: ref string) : (bool, context)
=
match t with
    | TDoWhile tr tr m
    let ( }\mp@subsup{b}{1}{},\mp@subsup{\Gamma}{1}{})=\mathrm{ interp_term t 
    let (b2, Г})
        try
            interp_term t2 \Gamma s stdout
        with
                EFatal }\mp@subsup{\Gamma}{2}{}->>(false, \Gamma2
        end
    in
    if b}\mp@subsup{b}{2}{}\mathrm{ then
        interp_term t \Gamma
    else
        ( }\mp@subsup{b}{1}{},\mp@subsup{\Gamma}{2}{}
```


Table of Contents

1. Language

- CoLiS
- Mechanised version

2. Sound and complete interpreter

- Let us see some code
- Soundness
- Completeness
- Looking for a variant...
- Skeletons

Soundness of the interpreter

Theorem (Soundness of the interpreter)
For all t, Γ, σ, b and Γ^{\prime} : if

$$
t_{/ \Gamma} \mapsto \sigma \star b_{/ \Gamma}
$$

then

$$
t_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime}}
$$

Contract（excerpt）

```
let rec interp_term (t: term) (\Gamma: context)
    (stdout: ref string) : (bool, context)
diverges
returns { (b, 「') -> exists \sigma.
    !stdout = concat (old !stdout) }
    \\ eval_term t 「 \sigma (BNormal b) 「' }
```


Contract（excerpt）

```
let rec interp_term (t: term) (\Gamma: context)
    (stdout: ref string) : (bool, context)
diverges
returns { (b, 「') -> exists \sigma.
    !stdout = concat (old !stdout) \sigma
    \ eval_term t 「 \sigma (BNormal b) 「' }
raises { EReturn (b, Г') -> exists \sigma.
    !stdout = concat (old !stdout) \sigma
    \\ eval_term t 「 \sigma (BReturn b) 「' }
```


Why it is non trivial

- stdout is a reference

- Usual fix: provide a witness as a ghost return value:
- May only be used for snecification,
- Must not affect the semantics of the program.
- Does not fit with exceptions;
- Forces us to use superposition provers.

Why it is non trivial

- stdout is a reference:

```
exists \sigma. !stdout = concat (old !stdout) \sigma
\\ eval_term t 「 \sigma (BNormal b) 「'
```

- Usual fix: provide a witness as a ghost return value: - May only be used for specification, - Must not affect the semantics of the program.
- Does not fit with exceptions;
- Forces us to use superposition provers.

Why it is non trivial

- stdout is a reference:

```
exists \sigma. !stdout = concat (old !stdout) }
    \ eval_term t 「 \sigma (BNormal b) 「'
```

- Usual fix: provide a witness as a ghost return value:
- May only be used for specification,
- Must not affect the semantics of the program.
- Does not fit with exceptions;
- Forces us to use superposition provers.

Why it is non trivial

- stdout is a reference:

```
exists \sigma. !stdout = concat (old !stdout) }
    \ eval_term t 「 \sigma (BNormal b) 「'
```

- Usual fix: provide a witness as a ghost return value:
- May only be used for specification,
- Must not affect the semantics of the program.
- Does not fit with exceptions;
- Forces us to use superposition provers.

Why it is non trivial

- stdout is a reference:

```
exists \sigma. !stdout = concat (old !stdout) }
    \ eval_term t 「 \sigma (BNormal b) 「'
```

- Usual fix: provide a witness as a ghost return value:
- May only be used for specification,
- Must not affect the semantics of the program.
- Does not fit with exceptions;
- Forces us to use superposition provers.

Table of Contents

- CoLiS
- Mechanised version

2. Sound and complete interpreter

- Let us see some code
- Soundness
- Completeness
- Looking for a variant...
- Skeletons

Completeness of the interpreter

Theorem (Completeness of the interpreter)
For all t, Γ, σ, b and Γ^{\prime} : if

$$
t_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime}}
$$

then

$$
t / \Gamma \mapsto \sigma \star b_{/ \Gamma^{\prime}}
$$

Proofs dependencies

Why

- If:

$$
t_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime}}
$$

- then the interpreter terminates:

- then (Soundness):

$$
t_{/ \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}}
$$

- then (Functionality):

$$
\sigma=\sigma_{1} \wedge b=b_{1} \wedge \Gamma^{\prime}=\Gamma_{1}
$$

Why

- If:

$$
t_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime}}
$$

- then the interpreter terminates:

$$
t_{/ \Gamma} \mapsto \sigma_{1} \star b_{1 / \Gamma_{1}}
$$

- then (Soundness):

- then (Functionality):

Why

- If:

$$
t_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime}}
$$

- then the interpreter terminates:

$$
t_{/ \Gamma} \mapsto \sigma_{1} \star b_{1 / \Gamma_{1}}
$$

- then (Soundness):

$$
t_{/ \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}}
$$

- then (Functionality):

Why

- If:

$$
t_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime}}
$$

- then the interpreter terminates:

$$
t_{/ \Gamma} \mapsto \sigma_{1} \star b_{1 / \Gamma_{1}}
$$

- then (Soundness):

$$
t_{/ \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}}
$$

- then (Functionality):

$$
\sigma=\sigma_{1} \wedge b=b_{1} \wedge \Gamma^{\prime}=\Gamma_{1}
$$

Proofs dependencies

Why do we need all this?

Case of the sequence:
| TSeq $t_{1} t_{2}->$
let (_, Γ_{1}) $=$ interp_term $t_{1} \Gamma$ stdout in interp_term $t_{2} \Gamma_{1}$ stdout

- By hypothesis / pre-condition, there is σ, b and $\Gamma^{\prime \prime}$ such that:

$$
\left(t_{1} ; t_{2}\right) / \Gamma \Downarrow \sigma \star b / \Gamma^{\prime \prime}
$$

- By structure of the predicate, there is $\sigma^{\prime}, b^{\prime}$, and Γ^{\prime} such that:

$$
t_{1 / \Gamma} \Downarrow \sigma^{\prime} \times b^{\prime} / \Gamma^{\prime} \wedge t_{2 / \Gamma^{\prime}} \Downarrow \sigma \star b / \Gamma^{\prime \prime}
$$

- By soundness and functionality, $\Gamma^{\prime}=\Gamma_{1}$.

Why do we need all this?

Case of the sequence:
| TSeq $t_{1} t_{2}->$
let (_, Γ_{1}) $=$ interp_term $t_{1} \Gamma$ stdout in interp_term $t_{2} \Gamma_{1}$ stdout

- By hypothesis / pre-condition, there is σ, b and $\Gamma^{\prime \prime}$ such that:

$$
\left(t_{1} ; t_{2}\right) / \Gamma \Downarrow \sigma \star b / \Gamma^{\prime \prime}
$$

- By structure of the predicate, there is $\sigma^{\prime}, b^{\prime}$, and Γ^{\prime} such that:

$$
t_{1 / \Gamma} \Downarrow \sigma^{\prime} \times b^{\prime} / \Gamma^{\prime} \wedge t_{2 / \Gamma^{\prime}} \Downarrow \sigma \star b / \Gamma^{\prime \prime}
$$

- By soundness and functionality, $\Gamma^{\prime}=\Gamma_{1}$.

Why do we need all this?

Case of the sequence:
| TSeq $t_{1} t_{2}$->
let (_, Γ_{1}) $=$ interp_term $t_{1} \Gamma$ stdout in interp_term $t_{2} \Gamma_{1}$ stdout

- By hypothesis / pre-condition, there is σ, b and $\Gamma^{\prime \prime}$ such that:

$$
\left(t_{1} ; t_{2}\right)_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime \prime}}
$$

- By structure of the predicate, there is $\sigma^{\prime}, b^{\prime}$, and Γ^{\prime} such that:

- By soundness and functionality, $\Gamma^{\prime}=\Gamma_{1}$

Why do we need all this?

Case of the sequence:
| TSeq $t_{1} t_{2}$->
let (_, Γ_{1}) $=$ interp_term $t_{1} \Gamma$ stdout in interp_term $t_{2} \Gamma_{1}$ stdout

- By hypothesis / pre-condition, there is σ, b and $\Gamma^{\prime \prime}$ such that:

$$
\left(t_{1} ; t_{2}\right)_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime \prime}}
$$

- By structure of the predicate, there is $\sigma^{\prime}, b^{\prime}$, and Γ^{\prime} such that:

$$
t_{1 / \Gamma} \Downarrow \sigma^{\prime} \star b^{\prime} / \Gamma^{\prime} \wedge t_{2 / \Gamma^{\prime}} \Downarrow \sigma \star b_{/ \Gamma^{\prime \prime}}
$$

- By soundness and functionality, $\Gamma^{\prime}=\Gamma_{1}$.

Why do we need all this?

Case of the sequence:
| TSeq $t_{1} t_{2}$->
let (\quad, Γ_{1}) $=$ interp_term $t_{1} \Gamma$ stdout in interp_term $t_{2} \Gamma_{1}$ stdout

- By hypothesis / pre-condition, there is σ, b and $\Gamma^{\prime \prime}$ such that:

$$
\left(t_{1} ; t_{2}\right)_{/ \Gamma} \Downarrow \sigma \star b_{/ \Gamma^{\prime \prime}}
$$

- By structure of the predicate, there is $\sigma^{\prime}, b^{\prime}$, and Γ^{\prime} such that:

$$
t_{1 / \Gamma} \Downarrow \sigma^{\prime} \star b^{\prime} / \Gamma^{\prime} \wedge t_{2 / \Gamma^{\prime}} \Downarrow \sigma \star b_{/ \Gamma^{\prime \prime}}
$$

- By soundness and functionality, $\Gamma^{\prime}=\Gamma_{1}$.

Termination of the interpreter, in Why3

```
let rec interp_term (t: term) (\Gamma: context)
    (stdout: ref string) : (bool, context)
requires { exists \sigma b Г', eval_term t Г \sigma b 「' }
```

returns $\left\{\left(\mathrm{b}, \Gamma, \Gamma^{\prime}\right) \rightarrow\right.$ exists σ.
\quad !stdout $=$ concat (old !stdout) σ
$\quad /$ eval_term t $\Gamma \sigma$ (BNormal b) Γ,
variant \{ ... \}

Termination of the interpreter，in Why3

```
let rec interp_term (t: term) (\Gamma: context)
    (stdout: ref string) : (bool, context)
requires { exists \sigma b Г'. eval_term t Г \sigma b Г' }
returns { (b, 「') -> exists \sigma.
    !stdout = concat (old !stdout) \sigma
    \ eval_term t 「 \sigma (BNormal b) 「, }
```


Termination of the interpreter，in Why3

```
let rec interp_term (t: term) (\Gamma: context)
    (stdout: ref string) : (bool, context)
requires { exists \sigma b Г'. eval_term t Г \sigma b Г' }
returns { (b, 「') -> exists \sigma.
    !stdout = concat (old !stdout) \sigma
    \ eval_term t 「 \sigma (BNormal b) 「, }
variant { ... }
```


Table of Contents

- CoLiS
- Mechanised version

2. Sound and complete interpreter

- Let us see some code
- Soundness
- Completeness
- Looking for a variant...
- Skeletons

Let us find a variant

- CoLiS programs are structurally decreasing?

- Derivation trees of the semantics are structurally decreasing? True, but we cannot manipulate them in Why3.
- Can we use the height or the size of the proof tree?

Let us find a variant

- CoLiS programs are structurally decreasing? Wrong.

DoWhile-True

$$
t_{1 / \Gamma} \Downarrow \sigma_{1} \star \text { True }_{/ \Gamma_{1}}
$$

$$
t_{2 / \Gamma_{1}} \Downarrow \sigma_{2} \star \operatorname{True}_{/ \Gamma_{2}} \quad \text { do } t_{1} \text { while } t_{2 / \Gamma_{2}} \Downarrow \sigma_{3} \star b_{3 / \Gamma_{3}}
$$

do t_{1} while $t_{2 / \Gamma} \Downarrow \sigma_{1} \sigma_{2} \sigma_{3} \star b_{3 / \Gamma_{3}}$

- Derivation trees of the semantics are structurally decreasing? True, but we cannot manipulate them in Why3.
- Can we use the height or the size of the proof tree?

Let us find a variant

- CoLiS programs are structurally decreasing? Wrong.

DoWhile-True

$$
t_{1 / \Gamma} \Downarrow \sigma_{1} \star \text { True }_{/ \Gamma_{1}}
$$

$$
t_{2 / \Gamma_{1}} \Downarrow \sigma_{2} \star \operatorname{True}_{/ \Gamma_{2}} \quad \text { do } t_{1} \text { while } t_{2 / \Gamma_{2}} \Downarrow \sigma_{3} \star b_{3 / \Gamma_{3}}
$$

do t_{1} while $t_{2 / \Gamma} \Downarrow \sigma_{1} \sigma_{2} \sigma_{3} \star b_{3 / \Gamma_{3}}$

- Derivation trees of the semantics are structurally decreasing? True, but we cannot manipulate them in Why3.
- Can we use the height or the size of the proof tree?

Let us find a variant

- CoLiS programs are structurally decreasing? Wrong.

DoWhile-True

$$
t_{1 / \Gamma} \Downarrow \sigma_{1} \star \text { True }_{/ \Gamma_{1}}
$$

$$
t_{2 / \Gamma_{1}} \Downarrow \sigma_{2} \star{\text { True } / \Gamma_{2}}^{\text {do } t_{1} \text { while } t_{2 / \Gamma_{2}} \Downarrow \sigma_{3} \star b_{3 / \Gamma_{3}}}
$$

do t_{1} while $t_{2 / \Gamma} \Downarrow \sigma_{1} \sigma_{2} \sigma_{3} \star b_{3 / \Gamma_{3}}$

- Derivation trees of the semantics are structurally decreasing? True, but we cannot manipulate them in Why3.
- Can we use the height or the size of the proof tree?

Let us find a variant

- CoLiS programs are structurally decreasing? Wrong.

DoWhile-True

$$
\begin{aligned}
& t_{1 / \Gamma} \Downarrow \sigma_{1} \star \text { True }_{/ \Gamma_{1}} \\
& \underline{t_{2 / \Gamma_{1}} \Downarrow \sigma_{2} \star \operatorname{True}_{/ \Gamma_{2}} \quad \text { do } t_{1} \text { while } t_{2 / \Gamma_{2}} \Downarrow \sigma_{3} \star b_{3 / \Gamma_{3}}} \\
& \text { do } t_{1} \text { while } t_{2 / \Gamma} \Downarrow \sigma_{1} \sigma_{2} \sigma_{3} \star b_{3 / \Gamma_{3}}
\end{aligned}
$$

- Derivation trees of the semantics are structurally decreasing? True, but we cannot manipulate them in Why3.
- Can we use the height or the size of the proof tree?

Why it does not work

- Superposition provers are bad with arithmetic.
- SMT solvers are bad with existential quantifications.
- We cannot deduce from the height of a derivation tree the heights of the premises.
- We cannot deduce from the size of a derivation tree the sizes of the premises.

Why it does not work

- Superposition provers are bad with arithmetic.
- SMT solvers are bad with existential quantifications.
- We cannot deduce from the height of a derivation tree the heights of the premises.
- We cannot deduce from the size of a derivation tree the sizes of the premises.

Why it does not work

- Superposition provers are bad with arithmetic.
- SMT solvers are bad with existential quantifications.
- We cannot deduce from the height of a derivation tree the heights of the premises.
- We cannot deduce from the size of a derivation tree the sizes of the premises.

Table of Contents

- CoLiS
- Mechanised version

2. Sound and complete interpreter

- Let us see some code
- Soundness
- Completeness
- Looking for a variant...
- Skeletons

Back to square one

- We still want to say that proofs are structurally decreasing.
- We add a skeleton type:

- It represents the "shape" of the proof.

Back to square one

- We still want to say that proofs are structurally decreasing.
- We add a skeleton type:
type skeleton $=$
I SO
| S1 skeleton
| S2 skeleton skeleton
| S3 skeleton skeleton skeleton
- It represents the "shape" of the proof.

Back to square one

- We still want to say that proofs are structurally decreasing.
- We add a skeleton type:

```
type skeleton =
    | SO
    | S1 skeleton
    | S2 skeleton skeleton
    | S3 skeleton skeleton skeleton
```

- It represents the "shape" of the proof.

Put them everywhere－In the predicate

```
inductive eval_term term context
string behaviour context skeleton =
```



```
eval_term t \Gamma 「 \sigma
eval_term t }\mp@subsup{\Gamma}{1}{}\mp@subsup{\sigma}{2}{}\mathrm{ (BNormal True) Г 泣 sk2 ->
```



```
eval_term (TDoWhile t t t ) 「
    (concat (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{}\mathrm{ ) 的) b}\mp@subsup{b}{3}{}\mp@subsup{\Gamma}{3}{}\mathrm{ (S3 sk1 sk2 sk3)
| EvalT_DoWhile_False : forall t \ \Gamma }\mp@subsup{\sigma}{1}{}\mp@subsup{b}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{3}{}\mp@subsup{\sigma}{3}{}\mp@subsup{b}{3}{}\mp@subsup{\Gamma}{3}{}\mp@subsup{t}{2}{}\mathrm{ sk1 sk2.
    eval_term t \ 「 \sigma
    eval_term t2 \Gamma}\mp@subsup{|}{2}{}\mp@subsup{\sigma}{2}{}\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{}\mathrm{ sk2 ->
    (match b with BNormal False | BFatal -> true | _ -> false end
    eval_term (TDoWhile tr t t ) 「
    (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{\prime}\mathrm{ ) (BNormal b}\mp@subsup{b}{1}{})\mp@subsup{\Gamma}{2}{(S2 sk1 sk2)
```


Put them everywhere - In the contract

```
let rec interp_term (t: term) (\Gamma: context)
    (stdout: ref string) (ghost sk: skeleton)
    : (bool, context)
    requires { exists s b g'. eval_term t g s b g' sk }
    returns { (b, Г') -> exists \sigma.
    !stdout = concat (old !stdout) }
    \ eval_term t 「 \sigma (BNormal b) 「' sk }
variant { sk }
```


Put them everywhere - In the code

```
| TDoWhile tr tr ->
let ghost sk1 = get_skeleton123 sk in
let ( }\mp@subsup{b}{1}{},\mp@subsup{\Gamma}{1}{})=\mathrm{ interp_term tr }\Gamma\mathrm{ stdout sk1 in
let (b},\mp@subsup{b}{2}{})
    try
        let ghost (_, sk2) = get_skeleton23 sk in
        interp_term tr \Gamma \ stdout sk2
    with
        EFatal \Gamma}\mp@subsup{2}{2}{}->(false, \Gamma ( )
    end
in
if b}\mp@subsup{b}{2}{}\mathrm{ then
    let ghost (_, _, sk3) = get_skeleton3 sk in
    interp_term t \Gamma 
else
    (b
```


And it works!

- Soundness proof:
- 120 proof obligations;
- 190 seconds (i7 processor, no parallelisation);
- Uses Alt-Ergo, Z3 and E (crucially);
- Entirely automatic.
- Termination proof:
- 230 proof obligations;
- 510 seconds;
- Uses Alt-Ergo, Z3 and E;
- Still entirely automatic.

Conclusion

- CoLiS is an abstraction of a subset of Shell;
- Its syntax and semantics are formalised in Why3;
- The reference interpreter is proven sound and complete w.r.t. the semantics;
- This proof uses SMT solvers, superposition provers and proof trees as first class values.

Conclusion

- CoLiS is an abstraction of a subset of Shell;
- Its syntax and semantics are formalised in Why3;
- The reference interpreter is proven sound and complete w.r.t. the semantics;
- This proof uses SMT solvers, superposition provers and proof trees as first class values.

Thank you for your attention! Questions? Comments? Suggestions?

Shell exemple

$$
\begin{aligned}
& \text { f () \{ echo \$1 \$a; \} } \\
& \mathrm{a}=\mathrm{foo} \\
& \mathrm{a}=\mathrm{bar} \mathrm{f} \text { \$a } \quad \text { \#\# echoes "foo bar" }
\end{aligned}
$$

Shell exemple

```
f () { echo $1 $a; }
a=foo
a=bar f $a ## echoes "foo bar"
echo $a ## echoes "bar"
```


Syntax - 1

String variables	x_{s}	ϵ	SVar	
List variables	x_{1}	ϵ	LVar	
Procedures names	c	ϵ	\mathcal{F}	
Programs	p	$=$		program t
Variables decl.	vdecl	$=$	varst	varlist x_{1}
Procedures decl.	pdecl	$=$	proc	

Syntax - 2

$$
\begin{aligned}
\text { Terms } t::= & \text { true } \mid \text { false } \mid \text { fatal } \\
& \mid \text { return } t \mid \text { exit } t \\
& \left|x_{s}:=s\right| x_{l}:=\mid \\
& |t ; t| \text { if } t \text { then } t \text { else } t \\
& \mid \text { for } x_{s} \text { in } / \text { do } t \mid \text { while } t \text { do } t \\
& \mid \text { process } t \mid \text { pipe } t \text { into } t \\
& \mid \text { call } \mid \quad \text { shift }
\end{aligned}
$$

Syntax - 3

String expressions $s::=$ nil $_{s} \mid f_{s}:: s$
String fragments $\quad f_{s}::=\sigma\left|x_{s}\right| n \mid t$
List expressions | $::=$ nil $_{/} \mid f_{l}:: /$
List fragments $\quad f_{l}::=s \mid$ split $s \mid x_{l}$

Semantics - First definitions

Behaviours: terms
$b \in\{$ True, False, Fatal, Return True Return False, Exit True, Exit False\}

Behaviours: expressions $\beta \in\{$ True, Fatal, None $\}$

Environments: strings
Environmente: lists
Contexts
$\Gamma \in \mathcal{F S} \times$ String \times StringList \times SEnv \times LEnv

In a context: file system, standard input, arguments line, string environment, list environment.

Semantics - First definitions

Behaviours: terms

$$
\begin{aligned}
b \in \quad & \{\text { True, False, Fatal, Return True } \\
& \text { Return False, Exit True, Exit False }\}
\end{aligned}
$$

Behaviours: expressions $\beta \in\{$ True, Fatal, None $\}$
Environments: strings

$$
\begin{aligned}
& \text { SEnv } \triangleq[S V a r ~ \\
& \text { String }] \\
& \text { LEnv } \triangleq[\text { LVar } \rightharpoonup \text { StringList }] \\
\Gamma \in & \mathcal{F S} \times \text { String } \times \text { StringList } \\
& \times \text { SEnv } \times \text { LEnv }
\end{aligned}
$$

In a context: file system, standard input, arguments line, string environment, list environment.

Semantic judgments

Judgments: terms

Judgments: string fragment
Judgments: string expression

Judgments: list fragment
Judgments: list expression

$$
t_{/ \Gamma} \quad \Downarrow \quad \sigma \star b_{/ \Gamma^{\prime}}
$$

$$
\begin{array}{ccc}
f_{s / \Gamma} & \psi_{s f} & \sigma \star \beta_{/ \Gamma^{\prime}} \\
s_{/ \Gamma} & \psi_{s} & \sigma \star \beta / \Gamma^{\prime}
\end{array}
$$

$$
f_{l / \Gamma} \quad \psi_{l f} \quad \lambda \star \beta_{/ \Gamma^{\prime}}
$$

$$
I_{/ \Gamma} \quad \Downarrow_{I} \quad \lambda \star \beta_{/ \Gamma^{\prime}}
$$

A few rules - Sequence

SEQUENCE-Normal

$$
\frac{t_{1 / \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}} \quad b_{1} \in\{\text { True, False }\} \quad t_{2 / \Gamma_{1}} \Downarrow \sigma_{2} \star b_{2 / \Gamma_{2}}}{\left(t_{1} ; t_{2}\right)_{/ \Gamma} \Downarrow \sigma_{1} \sigma_{2} \star b_{2 / \Gamma_{2}}}
$$

A few rules - Sequence

SEQUENCE-Normal

$$
\frac{t_{1 / \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}} \quad b_{1} \in\{\text { True, False }\} \quad t_{2 / \Gamma_{1}} \Downarrow \sigma_{2} \star b_{2 / \Gamma_{2}}}{\left(t_{1} ; t_{2}\right)_{/ \Gamma} \Downarrow \sigma_{1} \sigma_{2} \star b_{2 / \Gamma_{2}}}
$$

$$
\begin{aligned}
& \text { SEQUENCE-EXCEPTION } \\
& \frac{t_{1 / \Gamma \Downarrow} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}} \quad b_{1} \in\{\text { Fatal, Return }, \text {, Exit }\}}{\left(t_{1} ; t_{2}\right)_{/ \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}}}
\end{aligned}
$$

A few rules - Branching

Branching-True
$t_{1 / \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}} \quad b_{1}=$ True $\quad t_{2 / \Gamma_{2}} \Downarrow \sigma_{2} \star b_{2 / \Gamma_{2}}$
(if t_{1} then t_{2} else $\left.t_{3}\right)_{/ \Gamma} \Downarrow \sigma_{1} \sigma_{2} \star b_{2 / \Gamma_{2}}$

(if t_{1} then t_{2} else $\left.t_{3}\right)_{/ \Gamma} \Downarrow \sigma_{1} \sigma_{3} \star b_{3 / \Gamma_{3}}$

BRANCHING-ExCEPTION

A few rules - Branching

Branching-TRUE

$$
t_{1 / \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}} \quad b_{1}=\text { True } \quad t_{2 / \Gamma_{2}} \Downarrow \sigma_{2} \star b_{2 / \Gamma_{2}}
$$

(if t_{1} then t_{2} else $\left.t_{3}\right)_{/ \Gamma \Downarrow} \sigma_{1} \sigma_{2} \star b_{2 / \Gamma_{2}}$

BRANCHING-FALSE

$$
\frac{t_{1 / \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}} \quad b_{1} \in\{\text { False, Fatal }\} \quad t_{3 / \Gamma_{3}} \Downarrow \sigma_{3} \star b_{3 / \Gamma_{3}}}{\left(\text { if } t_{1} \text { then } t_{2} \text { else } t_{3}\right)_{/ \Gamma} \Downarrow \sigma_{1} \sigma_{3} \star b_{3 / \Gamma_{3}}}
$$

(if t_{1} then t_{2} else $\left.t_{3}\right)_{/ \Gamma \Downarrow} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}}$

A few rules - Branching

Branching-True

$$
t_{1 / \Gamma} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}} \quad b_{1}=\text { True } \quad t_{2 / \Gamma_{2}} \Downarrow \sigma_{2} \star b_{2 / \Gamma_{2}}
$$

(if t_{1} then t_{2} else $\left.t_{3}\right)_{/ \Gamma} \Downarrow \sigma_{1} \sigma_{2} \star b_{2 / \Gamma_{2}}$
Branching-FALSE
$t_{1 / \Gamma \Downarrow} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}}$$\quad b_{1} \in\{$ False, Fatal $\} \quad t_{3 / \Gamma_{3} \Downarrow \sigma_{3} \star b_{3 / \Gamma_{3}}}$
(if t_{1} then t_{2} else $\left.t_{3}\right)_{/ \Gamma \Downarrow} \Downarrow \sigma_{1} \sigma_{3} \star b_{3 / \Gamma_{3}}$

Branching-Exception

$$
t_{1 / \Gamma \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}} \quad b_{1} \in\left\{\text { Return }_{-}, \text {Exit }\right\}}^{\substack{ \\\hline}}
$$

(if t_{1} then t_{2} else $\left.t_{3}\right)_{/ \Gamma \Downarrow} \Downarrow \sigma_{1} \star b_{1 / \Gamma_{1}}$

A few rules - Sequence


```
eval_term t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{\prime}(\mathrm{ BNormal b}\mp@subsup{b}{1}{})\mp@subsup{\Gamma}{1}{}-
eval_term th \Gamma
eval_term (TSeq t t t ) Г (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{})\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{
```

EvalT_Seq_Error
eval_term t_{1} 「 $\sigma_{1} b_{1} \Gamma_{1} \rightarrow$
(match b_{1} with BNormal
eval_term (TSeq $t_{1} t_{2}$) 「 $\sigma_{1} b_{1} \Gamma_{1}$

A few rules－Sequence

```
| EvalT_Seq_Normal : forall t 
    eval_term t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{\prime}(\mathrm{ BNormal b}\mp@subsup{b}{1}{})\mp@subsup{\Gamma}{1}{}-
    eval_term th \Gamma
    eval_term (TSeq t t t ) Г (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{})\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{
| EvalT_Seq_Error : forall t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{}\mp@subsup{b}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{2}{}
    eval_term t \ Г }\mp@subsup{\sigma}{1}{}\mp@subsup{b}{1}{}\mp@subsup{\Gamma}{1}{}-
    (match b with BNormal _ -> false | _ -> true end) ->
    eval_term (TSeq t t t ) 「 的 放涼
```


A few rules－Branching

```
| EvalT_If_True : forall t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{2}{}\mp@subsup{\sigma}{2}{}\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{}\mp@subsup{t}{3}{}
eval_term t \ 「 }\mp@subsup{\sigma}{1}{}\mathrm{ (BNormal True) Г \ ->
eval_term th \Gamma
eval_term (TIf tr tr th) Г (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{})\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{
```

EvalT_If_False : forall $t_{1} \Gamma \sigma_{1} b_{1} \Gamma_{1} t_{3} \sigma_{3} b_{3} \Gamma_{3} t_{2}$.
eval_term $t_{1}\left\lceil\sigma_{1} b_{1} \Gamma_{1}\right.$->
(match b_{1} with BNormal False | BFatal -> true
eval_term $t_{3} \Gamma_{1} \sigma_{3} b_{3} \Gamma_{3}$->
eval_term (TIf $t_{1} t_{2} t_{3}$) 「 (concat $\left.\sigma_{1} \sigma_{3}\right) b_{3} \Gamma_{3}$
EvalT_If_Transmit : forall $t_{1} \Gamma \sigma_{1} b_{1} \Gamma_{1} t_{2} t_{3}$.
eval_term t_{1} 「 $\sigma_{1} b_{1} \Gamma_{1}$->
(match b_{1} with BReturn _ | BExit _ -> true | _ -> false end)
eval_term (TIf $t_{1} t_{2} t_{3}$) 「 $\sigma_{1} b_{1} \Gamma_{1}$

A few rules－Branching

```
| EvalT_If_True : forall t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{2}{}\mp@subsup{\sigma}{2}{}\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{}\mp@subsup{t}{3}{}
eval_term t \ 「 }\mp@subsup{\sigma}{1}{}\mathrm{ (BNormal True) 「1 ->
eval_term th \Gamma
eval_term (TIf tr tr th) Г (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{})\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{
```



```
    (match b with BNormal False | BFatal -> true | _ -> false end
    eval_term t }\mp@subsup{\mp@code{S}}{1}{}\mp@subsup{\sigma}{3}{}\mp@subsup{b}{3}{}\mp@subsup{\Gamma}{3}{}\mathrm{ ->
    eval_term (TIf th tr th) Г (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{3}{})\mp@subsup{b}{3}{}\mp@subsup{\Gamma}{3}{
```

EvalT＿If＿Transmit ：forall $t_{1} \Gamma \sigma_{1} b_{1} \Gamma_{1} t_{2} t_{3}$ ． eval＿term $t_{1} \Gamma \sigma_{1} b_{1} \Gamma_{1} \rightarrow$ （match bi with BReturn＿｜BExit＿－＞true｜＿－＞false end） eval＿term（TIf $t_{1} t_{2} t_{3}$ ）「 $\sigma_{1} b_{1} \Gamma_{1}$

A few rules - Branching

```
| EvalT_If_True : forall t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{2}{}\mp@subsup{\sigma}{2}{}\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{}\mp@subsup{t}{3}{}
```



```
    eval_term th \Gamma
    eval_term (TIf tr tr th) Г (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{})\mp@subsup{b}{2}{}\mp@subsup{\Gamma}{2}{
| EvalT_If_False : forall t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{}\mp@subsup{b}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{3}{}\mp@subsup{\sigma}{3}{}\mp@subsup{b}{3}{}\mp@subsup{\Gamma}{3}{}\mp@subsup{t}{2}{}
```



```
    (match b with BNormal False | BFatal -> true | _ -> false end
```



```
    eval_term (TIf t t t t t t ) Г (concat }\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{3}{})\mp@subsup{b}{3}{}\mp@subsup{\Gamma}{3}{
| EvalT_If_Transmit : forall t }\mp@subsup{t}{1}{}\Gamma\mp@subsup{\sigma}{1}{}\mp@subsup{b}{1}{}\mp@subsup{\Gamma}{1}{}\mp@subsup{t}{2}{}\mp@subsup{t}{3}{}
```



```
    (match b with BReturn _ | BExit _ -> true | _ -> false end)
```


