
Unix filesystem and graph constraints

Nicolas Jeannerod

Journées PPS, October 12, 2017

Nicolas Jeannerod Journées PPS October 12, 2017 1 / 21

The CoLiS project

T1
Shell Script

Compiler P

CoLiS Program S,P

T3

Interpreter

Deep Embedding

S,P
Symbolic
Execution

T2
Translator

Tree
Transducers

L,P

Equivalence
Test

Tree
Constraints

Incremental
Simplification

P Paris
L Lille
S Saclay

Nicolas Jeannerod Journées PPS October 12, 2017 2 / 21

The CoLiS project

T1
Shell Script

Compiler P

CoLiS Program S,P

T3

Interpreter

Deep Embedding

S,P
Symbolic
Execution

T2
Translator

Tree
Transducers

L,P

Equivalence
Test

Tree
Constraints

Incremental
Simplification

P Paris
L Lille
S Saclay

Nicolas Jeannerod Journées PPS October 12, 2017 2 / 21

Description of file systems Unix file system

Table of Contents

1. Description of file systems
Unix file system
Static description
Directory update

2. Tree constraints
Definitions
Basic constraints
Existential and first order constraints

Nicolas Jeannerod Journées PPS October 12, 2017 3 / 21

Description of file systems Unix file system

Unix file system

/

usr etc

lib

libc.so libc.so.6

lib

root

Basically a tree with labelled nodes and edges;

There can be sharing at the leafs (hard link between files);

There can be pointers to other parts of the tree (symbolic links)
which may form cycles.

Nicolas Jeannerod Journées PPS October 12, 2017 4 / 21

Description of file systems Unix file system

Unix file system

/

usr etc

lib

libc.so libc.so.6

lib

root

Basically a tree with labelled nodes and edges;

There can be sharing at the leafs (hard link between files);

There can be pointers to other parts of the tree (symbolic links)
which may form cycles.

Nicolas Jeannerod Journées PPS October 12, 2017 4 / 21

Description of file systems Unix file system

Unix file system

/

usr etc

lib

libc.so libc.so.6

lib

root

Basically a tree with labelled nodes and edges;

There can be sharing at the leafs (hard link between files);

There can be pointers to other parts of the tree (symbolic links)
which may form cycles.

Nicolas Jeannerod Journées PPS October 12, 2017 4 / 21

Description of file systems Unix file system

Unix file system

/

usr etc

lib

libc.so libc.so.6

lib

root

Basically a tree with labelled nodes and edges;

There can be sharing at the leafs (hard link between files);

There can be pointers to other parts of the tree (symbolic links)
which may form cycles.

Nicolas Jeannerod Journées PPS October 12, 2017 4 / 21

Description of file systems Static description

Table of Contents

1. Description of file systems
Unix file system
Static description
Directory update

2. Tree constraints
Definitions
Basic constraints
Existential and first order constraints

Nicolas Jeannerod Journées PPS October 12, 2017 5 / 21

Description of file systems Static description

Static description

/

v w

x
u∅

usr etc

lib skel

ocaml

r

∣∣∣∣∣ ∃u, v, x, w. r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧ r[etc]w ∧ w[skel]u ∧ u∅

Nicolas Jeannerod Journées PPS October 12, 2017 6 / 21

Description of file systems Static description

Static description

/

v w

x
u∅

usr etc

lib skel

ocaml

r

∣∣∣∣∣ ∃u, v, x, w. r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧ r[etc]w ∧ w[skel]u ∧ u∅

Nicolas Jeannerod Journées PPS October 12, 2017 6 / 21

Description of file systems Static description

Static description

r

v w

x
u∅

usr etc

lib skel

ocaml

r

∣∣∣∣∣ ∃u, v, x, w. r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧ r[etc]w ∧ w[skel]u ∧ u∅

Nicolas Jeannerod Journées PPS October 12, 2017 6 / 21

Description of file systems Static description

Static description

r

v w

x
u∅

usr etc

lib skel

ocaml

r

∣∣∣∣∣ ∃u, v, x, w. r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧ r[etc]w ∧ w[skel]u ∧ u∅

Nicolas Jeannerod Journées PPS October 12, 2017 6 / 21

Description of file systems Static description

Static description

r

v w

x
u∅

usr etc

lib skel

ocaml

r

∣∣∣∣∣ ∃u, v, x, w. r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧ r[etc]w ∧ w[skel]u ∧ u∅

Nicolas Jeannerod Journées PPS October 12, 2017 6 / 21

Description of file systems Static description

Static description

r

v w

x
u∅

usr etc

lib skel

ocaml

r

∣∣∣∣∣ ∃u, v, x, w. r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧ r[etc]w ∧ w[skel]u ∧ u∅

Nicolas Jeannerod Journées PPS October 12, 2017 6 / 21

Description of file systems Static description

Static description

r

v w

x
u∅

usr etc

lib skel

ocaml

r

∣∣∣∣∣ ∃u, v, x, w. r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧ r[etc]w ∧ w[skel]u ∧ u∅

Nicolas Jeannerod Journées PPS October 12, 2017 6 / 21

Description of file systems Directory update

Table of Contents

1. Description of file systems
Unix file system
Static description
Directory update

2. Tree constraints
Definitions
Basic constraints
Existential and first order constraints

Nicolas Jeannerod Journées PPS October 12, 2017 7 / 21

Description of file systems Directory update

Directory update

r

v w

x

usr etc

lib

ocaml

mkdir /usr/lib/ocaml

r′

v′ w

x′

y′∅

usr etc

lib

ocaml

We want something like:

r′ = r[usr→ v′] ∧ v′ = v[lib→ x′] ∧ x′ = x[ocaml→ y′] ∧ y′∅

Nicolas Jeannerod Journées PPS October 12, 2017 8 / 21

Description of file systems Directory update

Directory update

r

v w

x

usr etc

lib

ocaml

mkdir /usr/lib/ocaml

r′

v′ w

x′

y′∅

usr etc

lib

ocaml

We want something like:

r′ = r[usr→ v′] ∧ v′ = v[lib→ x′] ∧ x′ = x[ocaml→ y′] ∧ y′∅

Nicolas Jeannerod Journées PPS October 12, 2017 8 / 21

Description of file systems Directory update

Directory update

r

v w

x

usr etc

lib

ocaml

mkdir /usr/lib/ocaml

r′

v′ w

x′

y′∅

usr etc

lib

ocaml

We want something like:

r′ = r[usr→ v′] ∧ v′ = v[lib→ x′] ∧ x′ = x[ocaml→ y′] ∧ y′∅

Nicolas Jeannerod Journées PPS October 12, 2017 8 / 21

Description of file systems Directory update

Directory update

r

v w

x

usr etc

lib

ocaml

mkdir /usr/lib/ocaml

r′

v′ w

x′

y′∅

usr etc

lib

ocaml

We want something like:

r′ = r[usr→ v′] ∧ v′ = v[lib→ x′] ∧ x′ = x[ocaml→ y′] ∧ y′∅

Nicolas Jeannerod Journées PPS October 12, 2017 8 / 21

Description of file systems Directory update

Er.. is that really what we want?

Asymmetric:
y = x[f → v]

Makes it hard to eliminate variables:

y = x[f → v] ∧ z = x[g → w]

Contains in fact two pieces of information:
“y and x are different in f , identical everywhere else”:

y ∼f x

“y points to v through f”:
y[f]v

Nicolas Jeannerod Journées PPS October 12, 2017 9 / 21

Description of file systems Directory update

Er.. is that really what we want?

Asymmetric:
y = x[f → v]

Makes it hard to eliminate variables:

y = x[f → v] ∧ z = x[g → w]

Contains in fact two pieces of information:
“y and x are different in f , identical everywhere else”:

y ∼f x

“y points to v through f”:
y[f]v

Nicolas Jeannerod Journées PPS October 12, 2017 9 / 21

Description of file systems Directory update

Er.. is that really what we want?

Asymmetric:
y = x[f → v]

Makes it hard to eliminate variables:

y = x[f → v] ∧ z = x[g → w]

Contains in fact two pieces of information:
“y and x are different in f , identical everywhere else”:

y ∼f x

“y points to v through f”:
y[f]v

Nicolas Jeannerod Journées PPS October 12, 2017 9 / 21

Description of file systems Directory update

Er.. is that really what we want?

Asymmetric:
y = x[f → v]

Makes it hard to eliminate variables:

y = x[f → v] ∧ z = x[g → w]

Contains in fact two pieces of information:
“y and x are different in f , identical everywhere else”:

y ∼f x

“y points to v through f”:
y[f]v

Nicolas Jeannerod Journées PPS October 12, 2017 9 / 21

Description of file systems Directory update

Er.. is that really what we want?

Asymmetric:
y = x[f → v]

Makes it hard to eliminate variables:

y = x[f → v] ∧ z = x[g → w]

Contains in fact two pieces of information:
“y and x are different in f , identical everywhere else”:

y ∼f x

“y points to v through f”:
y[f]v

Nicolas Jeannerod Journées PPS October 12, 2017 9 / 21

Description of file systems Directory update

Er.. is that really what we want?

Asymmetric:
y = x[f → v]

Makes it hard to eliminate variables:

y = x[f → v] ∧ z = x[g → w]

Contains in fact two pieces of information:
“y and x are different in f , identical everywhere else”:

y ∼f x

“y points to v through f”:
y[f]v

Nicolas Jeannerod Journées PPS October 12, 2017 9 / 21

Description of file systems Directory update

Er.. is that really what we want?

Asymmetric:
y = x[f → v]

Makes it hard to eliminate variables:

y = x[f → v] ∧ z = x[g → w]

Contains in fact two pieces of information:
“y and x are different in f , identical everywhere else”:

y ∼f x

“y points to v through f”:
y[f]v

Nicolas Jeannerod Journées PPS October 12, 2017 9 / 21

Description of file systems Directory update

Much better

Allows to express the update:

y = x[f → v] := y ∼f x ∧ y[f]v

Symmetric:
y ∼f x⇐⇒ x ∼f y

Transitive:
y ∼f x ∧ z ∼f x =⇒ y ∼f z

Nicolas Jeannerod Journées PPS October 12, 2017 10 / 21

Description of file systems Directory update

Much better

Allows to express the update:

y = x[f → v] := y ∼f x ∧ y[f]v

Symmetric:
y ∼f x⇐⇒ x ∼f y

Transitive:
y ∼f x ∧ z ∼f x =⇒ y ∼f z

Nicolas Jeannerod Journées PPS October 12, 2017 10 / 21

Description of file systems Directory update

Much better

Allows to express the update:

y = x[f → v] := y ∼f x ∧ y[f]v

Symmetric:
y ∼f x⇐⇒ x ∼f y

Transitive:
y ∼f x ∧ z ∼f x =⇒ y ∼f z

Nicolas Jeannerod Journées PPS October 12, 2017 10 / 21

Tree constraints Definitions

Table of Contents

1. Description of file systems
Unix file system
Static description
Directory update

2. Tree constraints
Definitions
Basic constraints
Existential and first order constraints

Nicolas Jeannerod Journées PPS October 12, 2017 11 / 21

Tree constraints Definitions

Constraints

K finite set; Dir ∈ K; F infinite set

Finite trees labelled with K on nodes and F on edges

x, y variables; K ∈ K, f ∈ F , F ⊆ F

Equality x
.
= y K(x) Kind

Feature xfy xf ↑ Absence

Fence xF x ∼F y Similarity

Composed with ¬, ∧, ∨, ∃x, ∀x
No quantification on kinds and features

Wanted: (un)satisfiability of these constraints

Bonus point for incremental procedures

Nicolas Jeannerod Journées PPS October 12, 2017 12 / 21

Tree constraints Definitions

Constraints

K finite set; Dir ∈ K; F infinite set

Finite trees labelled with K on nodes and F on edges

x, y variables; K ∈ K, f ∈ F , F ⊆ F

Equality x
.
= y K(x) Kind

Feature xfy xf ↑ Absence

Fence xF x ∼F y Similarity

Composed with ¬, ∧, ∨, ∃x, ∀x
No quantification on kinds and features

Wanted: (un)satisfiability of these constraints

Bonus point for incremental procedures

Nicolas Jeannerod Journées PPS October 12, 2017 12 / 21

Tree constraints Definitions

Constraints

K finite set; Dir ∈ K; F infinite set

Finite trees labelled with K on nodes and F on edges

x, y variables; K ∈ K, f ∈ F , F ⊆ F

Equality x
.
= y K(x) Kind

Feature xfy xf ↑ Absence

Fence xF x ∼F y Similarity

Composed with ¬, ∧, ∨, ∃x, ∀x
No quantification on kinds and features

Wanted: (un)satisfiability of these constraints

Bonus point for incremental procedures

Nicolas Jeannerod Journées PPS October 12, 2017 12 / 21

Tree constraints Definitions

Constraints

K finite set; Dir ∈ K; F infinite set

Finite trees labelled with K on nodes and F on edges

x, y variables; K ∈ K, f ∈ F , F ⊆ F

Equality x
.
= y K(x) Kind

Feature xfy xf ↑ Absence

Fence xF x ∼F y Similarity

Composed with ¬, ∧, ∨, ∃x, ∀x
No quantification on kinds and features

Wanted: (un)satisfiability of these constraints

Bonus point for incremental procedures

Nicolas Jeannerod Journées PPS October 12, 2017 12 / 21

Tree constraints Definitions

Constraints

K finite set; Dir ∈ K; F infinite set

Finite trees labelled with K on nodes and F on edges

x, y variables; K ∈ K, f ∈ F , F ⊆ F

Equality x
.
= y K(x) Kind

Feature xfy xf ↑ Absence

Fence xF x ∼F y Similarity

Composed with ¬, ∧, ∨, ∃x, ∀x
No quantification on kinds and features

Wanted: (un)satisfiability of these constraints

Bonus point for incremental procedures

Nicolas Jeannerod Journées PPS October 12, 2017 12 / 21

Tree constraints Definitions

Game plan

1. Write a system of rewriting rules;

2. Prove that the system terminates (help it if needed);

3. Prove that the rules respect equivalences:

Lemma

If φ reduces to ψ, then |= φ↔ ψ.

4. Prove nice properties on the normal forms:

Lemma

If φ is in normal form, then it is either satisfiable or ⊥.

Nicolas Jeannerod Journées PPS October 12, 2017 13 / 21

Tree constraints Definitions

Game plan

1. Write a system of rewriting rules;

2. Prove that the system terminates (help it if needed);

3. Prove that the rules respect equivalences:

Lemma

If φ reduces to ψ, then |= φ↔ ψ.

4. Prove nice properties on the normal forms:

Lemma

If φ is in normal form, then it is either satisfiable or ⊥.

Nicolas Jeannerod Journées PPS October 12, 2017 13 / 21

Tree constraints Definitions

Game plan

1. Write a system of rewriting rules;

2. Prove that the system terminates (help it if needed);

3. Prove that the rules respect equivalences:

Lemma

If φ reduces to ψ, then |= φ↔ ψ.

4. Prove nice properties on the normal forms:

Lemma

If φ is in normal form, then it is either satisfiable or ⊥.

Nicolas Jeannerod Journées PPS October 12, 2017 13 / 21

Tree constraints Definitions

Game plan

1. Write a system of rewriting rules;

2. Prove that the system terminates (help it if needed);

3. Prove that the rules respect equivalences:

Lemma

If φ reduces to ψ, then |= φ↔ ψ.

4. Prove nice properties on the normal forms:

Lemma

If φ is in normal form, then it is either satisfiable or ⊥.

Nicolas Jeannerod Journées PPS October 12, 2017 13 / 21

Tree constraints Basic constraints

Table of Contents

1. Description of file systems
Unix file system
Static description
Directory update

2. Tree constraints
Definitions
Basic constraints
Existential and first order constraints

Nicolas Jeannerod Journées PPS October 12, 2017 14 / 21

Tree constraints Basic constraints

Basic rules

Basic constraints: conjunction of positive atoms.

Simpl-Feats

xfy ∧ xfz
xfy ∧ y .

= z

C-Feat-Abs

xfy ∧ xf ↑
⊥

Intro-Feat-Sim

x ∼F y ∧ xfz
x ∼F y ∧ xfz ∧ yfz

f /∈ F

Intro-Sim-Sims

x ∼F y ∧ y ∼G z

x ∼F y ∧ y ∼G z ∧ x ∼(F∪G) z

Nicolas Jeannerod Journées PPS October 12, 2017 15 / 21

Tree constraints Basic constraints

Basic rules

Basic constraints: conjunction of positive atoms.

Simpl-Feats

xfy ∧ xfz
xfy ∧ y .

= z

C-Feat-Abs

xfy ∧ xf ↑
⊥

Intro-Feat-Sim

x ∼F y ∧ xfz
x ∼F y ∧ xfz ∧ yfz

f /∈ F

Intro-Sim-Sims

x ∼F y ∧ y ∼G z

x ∼F y ∧ y ∼G z ∧ x ∼(F∪G) z

Nicolas Jeannerod Journées PPS October 12, 2017 15 / 21

Tree constraints Basic constraints

Basic rules

Basic constraints: conjunction of positive atoms.

Simpl-Feats

xfy ∧ xfz
xfy ∧ y .

= z

C-Feat-Abs

xfy ∧ xf ↑
⊥

Intro-Feat-Sim

x ∼F y ∧ xfz
x ∼F y ∧ xfz ∧ yfz

f /∈ F

Intro-Sim-Sims

x ∼F y ∧ y ∼G z

x ∼F y ∧ y ∼G z ∧ x ∼(F∪G) z

Nicolas Jeannerod Journées PPS October 12, 2017 15 / 21

Tree constraints Basic constraints

Basic rules

Basic constraints: conjunction of positive atoms.

Simpl-Feats

xfy ∧ xfz
xfy ∧ y .

= z

C-Feat-Abs

xfy ∧ xf ↑
⊥

Intro-Feat-Sim

x ∼F y ∧ xfz
x ∼F y ∧ xfz ∧ yfz

f /∈ F

Intro-Sim-Sims

x ∼F y ∧ y ∼G z

x ∼F y ∧ y ∼G z ∧ x ∼(F∪G) z

Nicolas Jeannerod Journées PPS October 12, 2017 15 / 21

Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel

Nicolas Jeannerod Journées PPS October 12, 2017 16 / 21

Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel

Nicolas Jeannerod Journées PPS October 12, 2017 16 / 21

Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel

Nicolas Jeannerod Journées PPS October 12, 2017 16 / 21

Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel

Nicolas Jeannerod Journées PPS October 12, 2017 16 / 21

Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel

Nicolas Jeannerod Journées PPS October 12, 2017 16 / 21

Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel

Nicolas Jeannerod Journées PPS October 12, 2017 16 / 21

Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel

Nicolas Jeannerod Journées PPS October 12, 2017 16 / 21

Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel

Nicolas Jeannerod Journées PPS October 12, 2017 16 / 21

Tree constraints Existential and first order constraints

Table of Contents

1. Description of file systems
Unix file system
Static description
Directory update

2. Tree constraints
Definitions
Basic constraints
Existential and first order constraints

Nicolas Jeannerod Journées PPS October 12, 2017 17 / 21

Tree constraints Existential and first order constraints

Negation: new players, new rules

¬xF : there exist a g /∈ F such that xg↓;
x 6∼F y: there exist a g /∈ F such that x 6 .=g y;

Repl-NKind

¬K(x)∨
L∈K

L(x)

Repl-NAbs

¬xf ↑
∃z.xfz

Repl-NSim-NFence

xF ∧ x 6∼G y

xF ∧ ¬xG
F ⊆ G

Nicolas Jeannerod Journées PPS October 12, 2017 18 / 21

Tree constraints Existential and first order constraints

Negation: new players, new rules

¬xF : there exist a g /∈ F such that xg↓;
x 6∼F y: there exist a g /∈ F such that x 6 .=g y;

Repl-NKind

¬K(x)∨
L∈K

L(x)

Repl-NAbs

¬xf ↑
∃z.xfz

Repl-NSim-NFence

xF ∧ x 6∼G y

xF ∧ ¬xG
F ⊆ G

Nicolas Jeannerod Journées PPS October 12, 2017 18 / 21

Tree constraints Existential and first order constraints

Negation: new players, new rules

¬xF : there exist a g /∈ F such that xg↓;
x 6∼F y: there exist a g /∈ F such that x 6 .=g y;

Repl-NKind

¬K(x)∨
L∈K

L(x)

Repl-NAbs

¬xf ↑
∃z.xfz

Repl-NSim-NFence

xF ∧ x 6∼G y

xF ∧ ¬xG
F ⊆ G

Nicolas Jeannerod Journées PPS October 12, 2017 18 / 21

Tree constraints Existential and first order constraints

Negation: new players, new rules

¬xF : there exist a g /∈ F such that xg↓;
x 6∼F y: there exist a g /∈ F such that x 6 .=g y;

Repl-NKind

¬K(x)∨
L∈K

L(x)

Repl-NAbs

¬xf ↑
∃z.xfz

Repl-NSim-NFence

xF ∧ x 6∼G y

xF ∧ ¬xG
F ⊆ G

Nicolas Jeannerod Journées PPS October 12, 2017 18 / 21

Tree constraints Existential and first order constraints

Quantifier elimination

Goal: be able to change an existentially quantified block into a
universally quantified one.(

∃ ~X.
∧
. . .
)
↔
(
∀~Y .

∨∧
. . .
)

Special rules:

Enlarg-Feat-Local

∃x.∃ ~X.(yfx ∧ φ(x, ~X))

yf ↓ ∧∀x.∃ ~X.(yfx→ φ(x, ~X))

Nicolas Jeannerod Journées PPS October 12, 2017 19 / 21

Tree constraints Existential and first order constraints

Quantifier elimination

Goal: be able to change an existentially quantified block into a
universally quantified one.(

∃ ~X.
∧
. . .
)
↔
(
∀~Y .

∨∧
. . .
)

Special rules:

Enlarg-Feat-Local

∃x.∃ ~X.(yfx ∧ φ(x, ~X))

yf ↓ ∧∀x.∃ ~X.(yfx→ φ(x, ~X))

Nicolas Jeannerod Journées PPS October 12, 2017 19 / 21

Tree constraints Existential and first order constraints

Lemma of 31 August

Lemma (31 August)

Let φ be a conjunction of the form:

φ(~X, ~Y) =
(∧

stuff about ~X
)
∧ ψ(~Y)

in normal form for our system.
Then we have:

|= ∀~Y .
(
∃ ~X. φ(~X, ~Y)

)
↔ ψ(~Y)

The system propagates all the useful information

We can just remove what we don’t need!

Nicolas Jeannerod Journées PPS October 12, 2017 20 / 21

Tree constraints Existential and first order constraints

Lemma of 31 August

Lemma (31 August)

Let φ be a conjunction of the form:

φ(~X, ~Y) =
(∧

stuff about ~X
)
∧ ψ(~Y)

in normal form for our system.
Then we have:

|= ∀~Y .
(
∃ ~X. φ(~X, ~Y)

)
↔ ψ(~Y)

The system propagates all the useful information

We can just remove what we don’t need!

Nicolas Jeannerod Journées PPS October 12, 2017 20 / 21

Thank you for your attention!

Recap’:

Need constraints on graphs to represent relations on file systems;

Extend “feature trees” with x ∼F y (“x and y are the same, except
maybe for the features in F”);

Use a system of rewrite rules whose normal forms have nice properties.

Future work:

Cleanup, formalise in a technical report;

Add inodes, permissions, timestamps, etc.

Implement an efficient version for the existential subset.

Nicolas Jeannerod Journées PPS October 12, 2017 21 / 21

	Description of file systems
	Unix file system
	Static description
	Directory update

	Tree constraints
	Definitions
	Basic constraints
	Existential and first order constraints

	Appendix

