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Description of file systems Unix file system

Unix file system

/

usr etc

lib

libc.so libc.so.6

lib

root

Basically a tree with labelled nodes and edges;

There can be sharing at the leafs (hard link between files);

There can be pointers to other parts of the tree (symbolic links)
which may form cycles.
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Description of file systems Static description

Static description
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∣∣∣∣∣ ∃u, v, x, w. r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧ r[etc]w ∧ w[skel]u ∧ u∅
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Description of file systems Directory update

Directory update

r

v w
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usr etc

lib

ocaml

mkdir /usr/lib/ocaml
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v′ w
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y′∅

usr etc

lib

ocaml

We want something like:

r′ = r[usr→ v′] ∧ v′ = v[lib→ x′] ∧ x′ = x[ocaml→ y′] ∧ y′∅

Nicolas Jeannerod Journées PPS October 12, 2017 8 / 21



Description of file systems Directory update

Directory update

r

v w

x

usr etc

lib

ocaml

mkdir /usr/lib/ocaml

r′

v′ w

x′

y′∅

usr etc

lib

ocaml

We want something like:

r′ = r[usr→ v′] ∧ v′ = v[lib→ x′] ∧ x′ = x[ocaml→ y′] ∧ y′∅

Nicolas Jeannerod Journées PPS October 12, 2017 8 / 21



Description of file systems Directory update

Directory update

r

v w

x

usr etc

lib

ocaml

mkdir /usr/lib/ocaml

r′

v′ w

x′

y′∅

usr etc

lib

ocaml

We want something like:

r′ = r[usr→ v′] ∧ v′ = v[lib→ x′] ∧ x′ = x[ocaml→ y′] ∧ y′∅

Nicolas Jeannerod Journées PPS October 12, 2017 8 / 21



Description of file systems Directory update

Directory update

r

v w

x

usr etc

lib

ocaml

mkdir /usr/lib/ocaml

r′

v′ w

x′

y′∅

usr etc

lib

ocaml

We want something like:

r′ = r[usr→ v′] ∧ v′ = v[lib→ x′] ∧ x′ = x[ocaml→ y′] ∧ y′∅

Nicolas Jeannerod Journées PPS October 12, 2017 8 / 21



Description of file systems Directory update

Er.. is that really what we want?

Asymmetric:
y = x[f → v]

Makes it hard to eliminate variables:

y = x[f → v] ∧ z = x[g → w]

Contains in fact two pieces of information:
“y and x are different in f , identical everywhere else”:

y ∼f x

“y points to v through f”:
y[f ]v
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Description of file systems Directory update

Much better

Allows to express the update:

y = x[f → v] := y ∼f x ∧ y[f ]v

Symmetric:
y ∼f x⇐⇒ x ∼f y

Transitive:
y ∼f x ∧ z ∼f x =⇒ y ∼f z
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Tree constraints Definitions

Constraints

K finite set; Dir ∈ K; F infinite set

Finite trees labelled with K on nodes and F on edges

x, y variables; K ∈ K, f ∈ F , F ⊆ F

Equality x
.
= y K(x) Kind

Feature xfy xf ↑ Absence

Fence xF x ∼F y Similarity

Composed with ¬, ∧, ∨, ∃x, ∀x
No quantification on kinds and features

Wanted: (un)satisfiability of these constraints

Bonus point for incremental procedures
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Tree constraints Definitions

Game plan

1. Write a system of rewriting rules;

2. Prove that the system terminates (help it if needed);

3. Prove that the rules respect equivalences:

Lemma

If φ reduces to ψ, then |= φ↔ ψ.

4. Prove nice properties on the normal forms:

Lemma

If φ is in normal form, then it is either satisfiable or ⊥.

Nicolas Jeannerod Journées PPS October 12, 2017 13 / 21



Tree constraints Definitions

Game plan

1. Write a system of rewriting rules;

2. Prove that the system terminates (help it if needed);

3. Prove that the rules respect equivalences:

Lemma

If φ reduces to ψ, then |= φ↔ ψ.

4. Prove nice properties on the normal forms:

Lemma

If φ is in normal form, then it is either satisfiable or ⊥.

Nicolas Jeannerod Journées PPS October 12, 2017 13 / 21



Tree constraints Definitions

Game plan

1. Write a system of rewriting rules;

2. Prove that the system terminates (help it if needed);

3. Prove that the rules respect equivalences:

Lemma

If φ reduces to ψ, then |= φ↔ ψ.

4. Prove nice properties on the normal forms:

Lemma

If φ is in normal form, then it is either satisfiable or ⊥.

Nicolas Jeannerod Journées PPS October 12, 2017 13 / 21



Tree constraints Definitions

Game plan

1. Write a system of rewriting rules;

2. Prove that the system terminates (help it if needed);

3. Prove that the rules respect equivalences:

Lemma

If φ reduces to ψ, then |= φ↔ ψ.

4. Prove nice properties on the normal forms:

Lemma

If φ is in normal form, then it is either satisfiable or ⊥.

Nicolas Jeannerod Journées PPS October 12, 2017 13 / 21



Tree constraints Basic constraints
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Tree constraints Basic constraints

Basic rules

Basic constraints: conjunction of positive atoms.

Simpl-Feats

xfy ∧ xfz
xfy ∧ y .

= z

C-Feat-Abs

xfy ∧ xf ↑
⊥

Intro-Feat-Sim

x ∼F y ∧ xfz
x ∼F y ∧ xfz ∧ yfz

f /∈ F

Intro-Sim-Sims

x ∼F y ∧ y ∼G z

x ∼F y ∧ y ∼G z ∧ x ∼(F∪G) z
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Tree constraints Basic constraints

Basic constraints

Basic constraints: conjunction of positive atoms

Equality: rewritten

Kind: Static “positive” information

Feature: Static “positive” information

Absence: Static “negative” information

Fence: Static “negative” information

Similarity: Dynamic information

r[usr]v ∧ v[lib]x ∧ x[ocaml] ↑
∧r[etc]w ∧ w[skel]u ∧ u∅
∧ . . .

r

v w

x u

usr etc

lib skel
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Tree constraints Existential and first order constraints
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Tree constraints Existential and first order constraints

Negation: new players, new rules

¬xF : there exist a g /∈ F such that xg↓;
x 6∼F y: there exist a g /∈ F such that x 6 .=g y;

Repl-NKind

¬K(x)∨
L∈K

L(x)

Repl-NAbs

¬xf ↑
∃z.xfz

Repl-NSim-NFence

xF ∧ x 6∼G y

xF ∧ ¬xG
F ⊆ G
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Tree constraints Existential and first order constraints

Quantifier elimination

Goal: be able to change an existentially quantified block into a
universally quantified one.(

∃ ~X.
∧
. . .
)
↔
(
∀~Y .

∨∧
. . .
)

Special rules:

Enlarg-Feat-Local

∃x.∃ ~X.(yfx ∧ φ(x, ~X))

yf ↓ ∧∀x.∃ ~X.(yfx→ φ(x, ~X))
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Tree constraints Existential and first order constraints

Lemma of 31 August

Lemma (31 August)

Let φ be a conjunction of the form:

φ( ~X, ~Y ) =
(∧

stuff about ~X
)
∧ ψ(~Y )

in normal form for our system.
Then we have:

|= ∀~Y .
(
∃ ~X. φ( ~X, ~Y )

)
↔ ψ(~Y )

The system propagates all the useful information

We can just remove what we don’t need!
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Thank you for your attention!

Recap’:

Need constraints on graphs to represent relations on file systems;

Extend “feature trees” with x ∼F y (“x and y are the same, except
maybe for the features in F”);

Use a system of rewrite rules whose normal forms have nice properties.

Future work:

Cleanup, formalise in a technical report;

Add inodes, permissions, timestamps, etc.

Implement an efficient version for the existential subset.
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