Feature constraints
 to modelise Unix filesystems

Nicolas Jeannerod

IRIF
February 7, 2018

The CoLiS Project

Shell

The CoLiS Project

Shell $\xrightarrow{\text { Translation }} \mathrm{IL}$

The CoLiS Project

The CoLiS Project

The CoLiS Project

The CoLiS Project

Specifications.. then what?

Find accessible states that lead to errors.

Specifications.. then what?

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.

Specifications.. then what?

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.
- "Lead to errors"? Where the script exists abnormally.

Specifications.. then what?

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.
- "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.

Specifications.. then what?

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.
- "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.
Check properties

Specifications.. then what?

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.
- "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.
Check properties:

- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s_{1}}\left(r_{\text {in }}, r_{\text {out }}\right) \leftrightarrow \operatorname{spec}_{s_{2}}\left(r_{\text {out }}, r_{\text {in }}\right)\right)$

Specifications.. then what?

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.
- "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.
Check properties:

- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s_{1}}\left(r_{\text {in }}, r_{\text {out }}\right) \leftrightarrow \operatorname{spec}_{s_{2}}\left(r_{\text {out }}, r_{\text {in }}\right)\right)$
- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s}\left(r_{\text {in }}, r_{\text {out }}\right) \rightarrow r_{\text {out }}[\right.$ home $]=r_{\text {in }}[$ home $\left.]\right)$

Specifications.. then what?

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.
- "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.
Check properties:

- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s_{1}}\left(r_{\text {in }}, r_{\text {out }}\right) \leftrightarrow \operatorname{spec}_{s_{2}}\left(r_{\text {out }}, r_{\text {in }}\right)\right)$
- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s}\left(r_{\text {in }}, r_{\text {out }}\right) \rightarrow r_{\text {out }}[\right.$ home $]=r_{\text {in }}[$ home $\left.]\right)$
- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s}\left(r_{\text {in }}, r_{\text {out }}\right) \leftrightarrow r_{\text {out }} \doteq r_{\text {in }}\right)$

Specifications.. then what?

Find accessible states that lead to errors.

- "Accessible"? Where the specification is satisfiable.
- "Lead to errors"? Where the script exists abnormally.

Fill automated report to script's maintainer.
Check properties:

- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s_{1}}\left(r_{\text {in }}, r_{\text {out }}\right) \leftrightarrow \operatorname{spec}_{s_{2}}\left(r_{\text {out }}, r_{\text {in }}\right)\right)$
- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s}\left(r_{\text {in }}, r_{\text {out }}\right) \rightarrow r_{\text {out }}[\right.$ home $]=r_{\text {in }}[$ home $\left.]\right)$
- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\operatorname{spec}_{s}\left(r_{\text {in }}, r_{\text {out }}\right) \leftrightarrow r_{\text {out }} \doteq r_{\text {in }}\right)$
- $\forall r_{\text {in }}, r_{\text {out }} \cdot\left(\exists r^{\prime} \cdot\left(\operatorname{spec}_{s_{1}}\left(r_{\text {in }}, r^{\prime}\right) \wedge \operatorname{spec}_{s_{2}}\left(r^{\prime}, r_{\text {out }}\right)\right) \leftrightarrow r_{\text {out }} \doteq r_{\text {in }}\right)$

Table of Contents

1. Description of filesystems

Unix filesystems
Static description
Directory update
2. Constraints

Definitions
Basic constraints
Negation
3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

Unix filesystem

- Basically a tree with labelled nodes and edges;

Unix filesystem

- Basically a tree with labelled nodes and edges;
- There can be sharing at the leafs (hard link between files);

Unix filesystem

- Basically a tree with labelled nodes and edges;
- There can be sharing at the leafs (hard link between files);
- There can be pointers to other parts of the tree (symbolic links)

Unix filesystem

- Basically a tree with labelled nodes and edges;
- There can be sharing at the leafs (hard link between files);
- There can be pointers to other parts of the tree (symbolic links) which may form cycles.

Table of Contents

1. Description of filesystems

Unix filesystems
Static description
Directory update
2. Constraints

Definitions
Basic constraints
Negation
3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

Static description

Static description

Static description

Static description

$$
c=\exists u, v, x, w \cdot\{
$$

Static description

$$
c=\exists u, v, x, w \cdot\left\{\begin{array}{l}
r[\mathrm{usr}] v \wedge v[\mathrm{lib}] x \\
\wedge r[\mathrm{etc}] w \wedge w[\mathrm{skel}] u
\end{array}\right.
$$

Static description

$$
c=\exists u, v, x, w \cdot\left\{\begin{array}{l}
r[\mathrm{usr}] v \wedge v[\mathrm{lib}] x \wedge x[\mathrm{ocaml}] \uparrow \\
\wedge r[\mathrm{etc}] w \wedge w[\text { skel }] u
\end{array}\right.
$$

Static description

$$
c=\exists u, v, x, w \cdot\left\{\begin{array}{c}
r[\mathrm{usr}] v \wedge v[\mathrm{lib}] x \wedge x[\mathrm{ocaml}] \uparrow \\
\wedge r[\mathrm{etc}] w \wedge w[\mathrm{skel}] u \wedge u[\varnothing]
\end{array}\right.
$$

Table of Contents

1. Description of filesystems

Unix filesystems
Static description
Directory update
2. Constraints

Definitions
Basic constraints
Negation
3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

Directory update

usr/ \etc

lib/
$/ \overline{\text { ocaml }}$

Directory update

usr/ \etc

lib/
mkdir /usr/lib/ocaml
$/ \overline{\text { ocaml }}$

Directory update

mkdir /usr/lib/ocaml

lib/
$/ \overline{\text { ocaml }}$
${ }_{\varnothing}^{/ o c a m l}$

Directory update

mkdir /usr/lib/ocaml

lib/
$/_{\varnothing}^{\text {ocaml }}$

$$
c^{\prime}=
$$

Directory update

$$
c^{\prime}=\exists v, v^{\prime}, x, x^{\prime}, y^{\prime} \cdot\{
$$

Directory update

$$
c^{\prime}=\exists v, v^{\prime}, x, x^{\prime}, y^{\prime} \cdot\left\{\begin{array}{l}
r^{\prime} \text { is } r \text { with usr } \rightarrow v^{\prime} \\
\wedge v^{\prime} \text { is } v \text { with lib } \rightarrow x^{\prime} \\
\wedge x^{\prime} \text { is } x \text { with ocaml } \rightarrow y^{\prime} \\
\wedge y^{\prime}[\varnothing]
\end{array}\right.
$$

Er.. is that really what we want?

- Asymmetric:

$$
y \text { is } x \text { with } f \rightarrow v
$$

Er.. is that really what we want?

- Asymmetric:

$$
y \text { is } x \text { with } f \rightarrow v
$$

- Makes it hard to eliminate variables:

$$
\exists x \cdot\binom{y \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } x \text { with } g \rightarrow w}
$$

Er.. is that really what we want?

- Asymmetric:

$$
y \text { is } x \text { with } f \rightarrow v
$$

- Makes it hard to eliminate variables:

$$
\exists x \cdot\binom{y \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } x \text { with } g \rightarrow w}
$$

- Contains in fact two pieces of information:

Er.. is that really what we want?

- Asymmetric:

$$
y \text { is } x \text { with } f \rightarrow v
$$

- Makes it hard to eliminate variables:

$$
\exists x \cdot\binom{y \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } x \text { with } g \rightarrow w}
$$

- Contains in fact two pieces of information:
- " y and x may be different in f but are identical everywhere else"

Er.. is that really what we want?

- Asymmetric:

$$
y \text { is } x \text { with } f \rightarrow v
$$

- Makes it hard to eliminate variables:

$$
\exists x \cdot\binom{y \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } x \text { with } g \rightarrow w}
$$

- Contains in fact two pieces of information:
- " y and x may be different in f but are identical everywhere else"
- " y points to v through f "

Er.. is that really what we want?

- Asymmetric:

$$
y \text { is } x \text { with } f \rightarrow v
$$

- Makes it hard to eliminate variables:

$$
\exists x \cdot\binom{y \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } x \text { with } g \rightarrow w}
$$

- Contains in fact two pieces of information:
- " y and x may be different in f but are identical everywhere else"
- " y points to v through $f^{\prime \prime}$:

$$
y[f] v
$$

Er.. is that really what we want?

- Asymmetric:

$$
y \text { is } x \text { with } f \rightarrow v
$$

- Makes it hard to eliminate variables:

$$
\exists x \cdot\binom{y \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } x \text { with } g \rightarrow w}
$$

- Contains in fact two pieces of information:
- " y and x may be different in f but are identical everywhere else":

$$
y \dot{\sim}_{f} x
$$

- " y points to v through f^{\prime} :

$$
y[f] v
$$

~: Much better

- Allows to express the update:

$$
" y \text { is } x \text { with } f \rightarrow v ":=y \dot{\sim}_{f} x \wedge y[f] v
$$

~: Much better

- Allows to express the update:

$$
" y \text { is } x \text { with } f \rightarrow v ":=y \dot{\sim}_{f} x \wedge y[f] v
$$

- Symmetric and transitive:

$$
\begin{gathered}
y \dot{\sim}_{f} x \\
y \dot{\sim}_{f} x \wedge z \dot{\sim}_{f} x
\end{gathered} \Longleftrightarrow x \dot{\sim}_{f} y .
$$

~: Much better

- Allows to express the update:

$$
" y \text { is } x \text { with } f \rightarrow v ":=y \dot{\sim}_{f} x \wedge y[f] v
$$

- Symmetric and transitive:

$$
\begin{gathered}
y \dot{\sim}_{f} x \\
y \dot{\sim}_{f} x \wedge z \dot{\sim}_{f} x
\end{gathered} \Longleftrightarrow x \dot{\sim}_{f} y
$$

- Other properties:

$$
\begin{aligned}
y \dot{\sim}_{f} x \wedge z \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\{f, g\}} z \\
y \dot{\sim}_{f} x \wedge y \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\varnothing} x
\end{aligned}
$$

~: Much better

- Allows to express the update:

$$
" y \text { is } x \text { with } f \rightarrow v ":=y \dot{\sim}_{f} x \wedge y[f] v
$$

- Symmetric and transitive:

$$
\begin{aligned}
y \dot{\sim}_{f} x & \Longleftrightarrow \dot{\sim}_{f} x \wedge z \dot{\sim}_{f} x
\end{aligned} \Longleftrightarrow x \dot{\sim}_{f} y
$$

- Other properties:

$$
\begin{aligned}
y \dot{\sim}_{f} x \wedge z \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\{f, g\}} z \\
y \dot{\sim}_{f} x \wedge y \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\varnothing} x
\end{aligned}
$$

- Allows to remove variables:

$$
\exists x \cdot\binom{y \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } x \text { with } g \rightarrow w}
$$

~: Much better

- Allows to express the update:

$$
" y \text { is } x \text { with } f \rightarrow v ":=y \dot{\sim}_{f} x \wedge y[f] v
$$

- Symmetric and transitive:

$$
\begin{aligned}
y \dot{\sim}_{f} x & \Longleftrightarrow \dot{\sim}_{f} x \wedge z \dot{\sim}_{f} x
\end{aligned} \Longleftrightarrow x \dot{\sim}_{f} y
$$

- Other properties:

$$
\begin{aligned}
y \dot{\sim}_{f} x \wedge z \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\{f, g\}} z \\
y \dot{\sim}_{f} x \wedge y \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\varnothing} x
\end{aligned}
$$

- Allows to remove variables:

$$
\exists x \cdot\binom{y \dot{\sim}_{f} x \wedge y[f] v}{\wedge z \dot{\sim}_{g} x \wedge z[g] w}
$$

~: Much better

- Allows to express the update:

$$
" y \text { is } x \text { with } f \rightarrow v ":=y \dot{\sim}_{f} x \wedge y[f] v
$$

- Symmetric and transitive:

$$
\begin{aligned}
y \dot{\sim}_{f} x & \Longleftrightarrow \dot{\sim}_{f} x \wedge z \dot{\sim}_{f} x
\end{aligned} \Longleftrightarrow x \dot{\sim}_{f} y
$$

- Other properties:

$$
\begin{aligned}
y \dot{\sim}_{f} x \wedge z \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\{f, g\}} z \\
y \dot{\sim}_{f} x \wedge y \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\varnothing} x
\end{aligned}
$$

- Allows to remove variables:

$$
\exists x \cdot\binom{y \dot{\sim}_{f} x \wedge y[f] v}{\wedge z \dot{\sim}_{g} x \wedge z[g] w} \leftrightarrow y[f] v \wedge z[g] w
$$

~: Much better

- Allows to express the update:

$$
" y \text { is } x \text { with } f \rightarrow v ":=y \dot{\sim}_{f} x \wedge y[f] v
$$

- Symmetric and transitive:

$$
\begin{aligned}
y \dot{\sim}_{f} x & \Longleftrightarrow \dot{\sim}_{f} x \wedge z \dot{\sim}_{f} x
\end{aligned} \Longleftrightarrow x \dot{\sim}_{f} y
$$

- Other properties:

$$
\begin{aligned}
y \dot{\sim}_{f} x \wedge z \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\{f, g\}} z \\
y \dot{\sim}_{f} x \wedge y \dot{\sim}_{g} x & \Longleftrightarrow y \dot{\sim}_{\varnothing} x
\end{aligned}
$$

- Allows to remove variables:

$$
\exists x \cdot\binom{y \dot{\sim}_{f} x \wedge y[f] v}{\wedge z \dot{\sim}_{g} x \wedge z[g] w} \leftrightarrow y[f] v \wedge z[g] w \wedge y \dot{\sim}_{\{f, g\}} z
$$

Table of Contents

1. Description of filesystems

Unix filesystems
Static description
Directory update
2. Constraints

Definitions
Basic constraints
Negation
3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

Model and Constraints

ftree $::=\mathcal{F} \rightsquigarrow$ ftree

Model and Constraints

$$
\text { ftree }::=\mathcal{F} \rightsquigarrow \text { ftree }
$$

- \mathcal{F} infinite set of features (names for the edges);
- $\mathcal{F} \rightsquigarrow$ ftree: partial function with finite domain;

Model and Constraints

$$
\text { ftree } \quad::=\mathcal{F} \rightsquigarrow \text { ftree }
$$

- \mathcal{F} infinite set of features (names for the edges);
- $\mathcal{F} \rightsquigarrow \mathrm{ftree}$: partial function with finite domain;
- Infinite set of variables x, y, etc.;
- $f \in \mathcal{F}, F \subset \mathcal{F}$ finite.

Equality $\quad x \doteq y$

Feature	$x[f] y$	$x[f] \uparrow$	Absence
Fence	$x[F]$	$x \dot{\sim}_{F} y$	Similarity

Model and Constraints

$$
\text { ftree } \quad::=\mathcal{F} \rightsquigarrow \text { ftree }
$$

- \mathcal{F} infinite set of features (names for the edges);
- $\mathcal{F} \rightsquigarrow$ ftree: partial function with finite domain;
- Infinite set of variables x, y, etc.;
- $f \in \mathcal{F}, F \subset \mathcal{F}$ finite.

Equality $\quad x \doteq y$

Feature	$x[f] y$	$x[f] \uparrow$	Absence
Fence	$x[F]$	$x \dot{\sim}_{F} y$	Similarity

- Composed with $\neg, \wedge, \vee, \exists x, \forall x$ (no quantification on features);

Model and Constraints

$$
\text { ftree } \quad::=\mathcal{F} \rightsquigarrow \text { ftree }
$$

- \mathcal{F} infinite set of features (names for the edges);
- $\mathcal{F} \rightsquigarrow$ ftree: partial function with finite domain;
- Infinite set of variables x, y, etc.;
- $f \in \mathcal{F}, F \subset \mathcal{F}$ finite.

Equality $\quad x \doteq y$

Feature	$x[f] y$	$x[f] \uparrow$	Absence
Fence	$x[F]$	$x \dot{\sim}_{F} y$	Similarity

- Composed with $\neg, \wedge, \vee, \exists x, \forall x$ (no quantification on features);
- Wanted: (un)satisfiability of these constraints;
- Bonus point for incremental procedures.

Semantics

$$
\mathcal{T}, \rho \models c
$$

- \mathcal{T} the model of all feature trees;
- $\rho: \mathcal{V}(c) \rightarrow \mathcal{T}$;

Semantics

$$
\mathcal{T}, \rho \models c
$$

- \mathcal{T} the model of all feature trees;
- $\rho: \mathcal{V}(c) \rightarrow \mathcal{T}$;

Equality: $\quad \mathcal{T}, \rho \quad \models x \doteq y \quad$ if $\quad \rho(x)=\rho(y)$

Semantics

$$
\mathcal{T}, \rho \models c
$$

- \mathcal{T} the model of all feature trees;
- $\rho: \mathcal{V}(c) \rightarrow \mathcal{T}$;

Equality: $\quad \mathcal{T}, \rho \quad \vDash x \doteq y \quad$ if $\quad \rho(x)=\rho(y)$
Feature: $\quad \mathcal{T}, \rho \vDash x[f] y$ if $\rho(x)(f)=\rho(y)$
Absence: $\quad \mathcal{T}, \rho \quad \models x[f] \uparrow \quad$ if $\quad f \notin \operatorname{dom}(\rho(x))$

Semantics

$$
\mathcal{T}, \rho \models c
$$

- \mathcal{T} the model of all feature trees;
- $\rho: \mathcal{V}(c) \rightarrow \mathcal{T}$;

Equality: $\quad \mathcal{T}, \rho \quad \models x \doteq y \quad$ if $\quad \rho(x)=\rho(y)$
Feature: $\quad \mathcal{T}, \rho \vDash x[f] y \quad$ if $\rho(x)(f)=\rho(y)$
Absence: $\quad \mathcal{T}, \rho \quad \models x[f] \uparrow \quad$ if $\quad f \notin \operatorname{dom}(\rho(x))$
Fence: $\quad \mathcal{T}, \rho \quad \vDash x[F] \quad$ if $\quad \operatorname{dom}(\rho(x)) \subseteq F$

Semantics

$$
\mathcal{T}, \rho \models c
$$

- \mathcal{T} the model of all feature trees;
- $\rho: \mathcal{V}(c) \rightarrow \mathcal{T}$;

Equality: $\quad \mathcal{T}, \rho \quad \vDash x \doteq y \quad$ if $\quad \rho(x)=\rho(y)$
Feature: $\quad \mathcal{T}, \rho \vDash x[f] y \quad$ if $\quad \rho(x)(f)=\rho(y)$
Absence: $\quad \mathcal{T}, \rho \quad \models x[f] \uparrow \quad$ if $\quad f \notin \operatorname{dom}(\rho(x))$
Fence: $\quad \mathcal{T}, \rho \vDash x[F] \quad$ if $\quad \operatorname{dom}(\rho(x)) \subseteq F$
Similarity: $\mathcal{T}, \rho \vDash x \dot{\sim}_{F} y$ if $\rho(x) \upharpoonright \bar{F}=\rho(y) \upharpoonright \bar{F}$

Table of Contents

1. Description of filesystems

Unix filesystems
Static description
Directory update
2. Constraints

Definitions
Basic constraints
Negation
3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

Game plan

- Rewriting system;

Game plan

- Rewriting system;
- Puts constraints in normal form (not necessarily unique);

Game plan

- Rewriting system;
- Puts constraints in normal form (not necessarily unique);
- Respects equivalences;

Game plan

- Rewriting system;
- Puts constraints in normal form (not necessarily unique);
- Respects equivalences;
- Normal forms: either \perp or with nice properties.

Basic rewriting system

$$
\begin{array}{lr}
x_{1}\left[f_{1}\right] x_{2} \wedge \ldots \wedge x_{n}\left[f_{n}\right] x_{1} & (n \geq 1) \\
x[f] y \wedge x[f] \uparrow & (f \notin F) \\
x[f] y \wedge x[F] &
\end{array}
$$

Clash Patterns

Basic rewriting system

$$
\begin{array}{lr}
x_{1}\left[f_{1}\right] x_{2} \wedge \ldots \wedge x_{n}\left[f_{n}\right] x_{1} & (n \geq 1) \\
x[f] y \wedge x[f] \uparrow & (f \notin F) \\
x[f] y \wedge x[F] & (f)
\end{array}
$$

Clash Patterns

$$
\begin{array}{ccc}
\exists X, x \cdot(x \doteq y \wedge c) & \Rightarrow \exists X \cdot c\{x \mapsto y\} & (x \neq y) \\
\exists X, z \cdot(x[f] y \wedge x[f] z \wedge c) & \Rightarrow \exists X \cdot(x[f] y \wedge c\{z \mapsto y\}) & (y \neq z) \\
x \dot{\sim}_{F} y \wedge x \dot{\sim}_{G} y \wedge c & \Rightarrow x \dot{\sim}_{F \cap G} y \wedge c & \\
\text { Simplification Rules }
\end{array}
$$

Basic rewriting system

$$
\begin{array}{lr}
x_{1}\left[f_{1}\right] x_{2} \wedge \ldots \wedge x_{n}\left[f_{n}\right] x_{1} & (n \geq 1) \\
x[f] y \wedge x[f] \uparrow & \\
x[f] y \wedge x[F] & (f \notin F)
\end{array}
$$

Clash Patterns

$$
\begin{array}{ccc}
\exists X, x \cdot(x \doteq y \wedge c) & \Rightarrow \exists X \cdot c\{x \mapsto y\} & (x \neq y) \\
\exists X, z \cdot(x[f] y \wedge x[f] z \wedge c) & \Rightarrow \exists X \cdot(x[f] y \wedge c\{z \mapsto y\}) & (y \neq z) \\
x \dot{\sim}_{F} y \wedge x \dot{\sim}_{G} y \wedge c & \Rightarrow x \dot{\sim}_{F \cap G} y \wedge c & \\
\text { Simplification Rules }
\end{array}
$$

$$
\begin{aligned}
x \dot{\sim}_{F} y \wedge x[f] z \wedge c & \Rightarrow x \dot{\sim}_{F} y \wedge x[f] z \wedge y[f] z \wedge c \quad(f \notin F) \\
x \dot{\sim}_{F} y \wedge x[f] \uparrow \wedge c & \Rightarrow x \dot{\sim}_{F} y \wedge x[f] \uparrow \wedge y[f] \uparrow \wedge c \quad(f \notin F) \\
x \dot{\sim}_{F} y \wedge x[G] \wedge c & \Rightarrow \quad x \dot{\sim}_{F} y \wedge x[G] \wedge y[F \cup G] \wedge c \\
x \dot{\sim}_{F} y \wedge x \dot{\sim}_{G} z \wedge c & \Rightarrow \quad x \dot{\sim}_{F} y \wedge x \dot{\sim}_{G} z \wedge y \dot{\sim}_{F \cup G} z \wedge c \\
& \left.\quad \text { (if } \bigcap_{y \dot{\sim}_{H} z} H \nsubseteq F \cup G\right)
\end{aligned}
$$

Propagation Rules

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma
Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma
Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- c is in normal form;

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- c is in normal form;
- $\mathcal{V}\left(g_{c}\right) \cap X=\varnothing$;
- every literal in l_{c} is about X;

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- c is in normal form;
- $\mathcal{V}\left(g_{c}\right) \cap X=\varnothing$;
- every literal in l_{c} is about X;
- there is no $y[f] x$ with $x \in X$ and $y \notin X$.

Properties

Lemma

The basic constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- c is in normal form;
- $\mathcal{V}\left(g_{c}\right) \cap X=\varnothing$;
- every literal in l_{c} is about X;
- there is no $y[f] x$ with $x \in X$ and $y \notin X$.

Then c is equivalent to g_{c}.

Table of Contents

1. Description of filesystems

Unix filesystems
Static description
Directory update
2. Constraints

Definitions
Basic constraints
Negation
3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

Negation: new players, new rules

aka La Slide de la Mort

Negation: new players, new rules

$$
\begin{gathered}
\neg x[f] y \wedge c \Rightarrow(x[f] \uparrow \vee \exists z \cdot(x[f] z \wedge y \nsucc \varnothing z)) \wedge c \\
\neg x[f] \uparrow \wedge c \Rightarrow \exists z \cdot x[f] z \wedge c \\
\text { Simple Replacement Rules }
\end{gathered}
$$

Negation: new players, new rules

$$
\begin{aligned}
\neg x[f] y \wedge c & \Rightarrow(x[f] \uparrow \vee \exists z \cdot(x[f] z \wedge y \not \not ㇒ \varnothing z)) \wedge c \\
\neg x[f] \uparrow \wedge c & \Rightarrow \exists z \cdot x[f] z \wedge c
\end{aligned}
$$

Simple Replacement Rules

$$
\begin{aligned}
x[F] \wedge \neg x[G] \wedge c & \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \not \chi_{G} y \wedge c & \Rightarrow x[F] \wedge\left(\neg y[F \cup G] \vee x \neq{ }_{F \backslash G} y\right) \wedge c \\
x \dot{\sim}_{F} y \wedge x \chi_{G} y \wedge c & \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G \\
& \text { More Replacement Rules }
\end{aligned}
$$

Negation: new players, new rules

$$
\begin{aligned}
x[F] \wedge \neg x[G] \wedge c & \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \not \chi_{G} y \wedge c & \Rightarrow x[F] \wedge(\neg y[F \cup G] \vee x \neq F \backslash G y) \wedge c \\
x \dot{\sim}_{F} y \wedge x \nsim ⿱_{G} y \wedge c & \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G y \wedge c
\end{aligned}
$$

More Replacement Rules

Negation: new players, new rules

$$
\begin{aligned}
x[F] \wedge \neg x[G] \wedge c & \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \not \chi_{G} y \wedge c & \Rightarrow x[F] \wedge(\neg y[F \cup G] \vee x \neq F \backslash G y) \wedge c \\
x \dot{\sim}_{F} y \wedge x \nsim ⿱_{G} y \wedge c & \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G y \wedge c
\end{aligned}
$$

More Replacement Rules

Negation: new players, new rules

$$
x\langle F\rangle:=\bigvee_{f \in F} \exists z \cdot x[f] z
$$

$$
\begin{aligned}
x[F] \wedge \neg x[G] \wedge c & \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \not \chi_{G} y \wedge c & \Rightarrow x[F] \wedge\left(\neg y[F \cup G] \vee x \neq \neq F_{F \backslash G} y\right) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c & \Rightarrow x \dot{\sim}_{F} y \wedge x \neq \neq F_{F \backslash G} y \wedge c
\end{aligned}
$$

More Replacement Rules

Negation: new players, new rules

$$
\begin{gathered}
x \neq F y:=\bigvee_{f \in F}\binom{\exists z^{\prime} \cdot\left(x[f] \uparrow \wedge y[f] z^{\prime}\right) \vee \exists z \cdot(x[f] z \wedge y[f] \uparrow)}{\vee \exists z, z^{\prime} \cdot\left(x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime}\right)} \\
x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \nsim G y \wedge c \Rightarrow x[F] \wedge\left(\neg y[F \cup G] \vee x \not \not ㇒ F_{F \backslash G} y\right) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F F \backslash y \wedge c \\
\text { More Replacement Rules }
\end{gathered}
$$

Negation: new players, new rules

$$
x \neq F \text { y }:=\bigvee_{f \in F}\binom{\exists z^{\prime} \cdot\left(x[f] \uparrow \wedge y[f] z^{\prime}\right) \vee \exists z \cdot(x[f] z \wedge y[f] \uparrow)}{\vee \exists z, z^{\prime} \cdot\left(x[f] z \wedge y[f] z^{\wedge} \wedge z \nsim \varnothing z^{\prime}\right)}
$$

$$
\begin{aligned}
x[F] \wedge \neg x[G] \wedge c & \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \not \chi_{G} y \wedge c & \Rightarrow x[F] \wedge\left(\neg y[F \cup G] \vee x \neq \not_{F \backslash G} y\right) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c & \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G y \wedge c
\end{aligned}
$$

More Replacement Rules

$$
\begin{aligned}
& x \dot{\sim}_{F} y \wedge \neg x[G] \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge(\neg x[F \cup G] \vee x\langle F \backslash G\rangle) \wedge c \quad(F \nsubseteq \\
& x \dot{\sim}_{F} y \wedge \neg x[G] \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge \neg x[G] \wedge \neg y[G] \wedge c \\
& x \dot{\sim}_{F} y \wedge x \not \chi_{G} z \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge\left(x \not \chi_{F \cup G} z \vee x \neq \neq F \backslash G z\right) \wedge c \\
& x \dot{\sim}_{F} y \wedge x \not \nsim G_{G} z \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge x \not \nsim_{G} z \wedge y \not \chi_{G} z \wedge c \\
& \text { Enlargement and Propagation Rules }
\end{aligned}
$$

Negation: new players, new rules

$$
\begin{gathered}
x \neq F y:=\bigvee_{f \in F}\binom{\exists z^{\prime} \cdot\left(x[f] \uparrow \wedge y[f] z^{\prime}\right) \vee \exists z \cdot(x[f] z \wedge y[f] \uparrow)}{\vee \exists z, z^{\prime} \cdot\left(x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime}\right)} \\
x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \not \chi_{G} y \wedge c \Rightarrow x[F] \wedge(\neg y[F \cup G] \vee x \neq \neq F \backslash G y) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G y \wedge c \\
\text { More Replacement Rules }
\end{gathered}
$$

Negation: new players, new rules

$$
\begin{gathered}
x \neq F y:=\bigvee_{f \in F}\binom{\exists z^{\prime} \cdot\left(x[f] \uparrow \wedge y[f] z^{\prime}\right) \vee \exists z \cdot(x[f] z \wedge y[f] \uparrow)}{\vee \exists z, z^{\prime} \cdot\left(x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime}\right)} \\
x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \nsim G y \wedge c \Rightarrow x[F] \wedge\left(\neg y[F \cup G] \vee x \not \not ㇒ F_{F \backslash G} y\right) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F F \backslash y \wedge c \\
\text { More Replacement Rules }
\end{gathered}
$$

Negation: new players, new rules

$$
\begin{gathered}
x \neq F y:=\bigvee_{f \in F}\binom{\exists z^{\prime} \cdot\left(x[f] \uparrow \wedge y[f] z^{\prime}\right) \vee \exists z \cdot(x[f] z \wedge y[f] \uparrow)}{\vee \exists z, z^{\prime} \cdot\left(x[f] z \wedge y[f] z^{\prime} \wedge z \not \chi_{\varnothing} z^{\prime}\right)} \\
x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \nsim G y \wedge c \Rightarrow x[F] \wedge\left(\neg y[F \cup G] \vee x \neq \not_{F \backslash G} y\right) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G y \wedge c \\
\text { More Replacement Rules }
\end{gathered}
$$

$x[F]=$ " x has no feature outside F "
$x \not \chi_{G} y=$ "there is a feature outside G that differentiates x and y "

Negation: new players, new rules

$$
\begin{gathered}
x \neq F y:=\bigvee_{f \in F}\binom{\exists z^{\prime} \cdot\left(x[f] \uparrow \wedge y[f] z^{\prime}\right) \vee \exists z \cdot(x[f] z \wedge y[f] \uparrow)}{\vee \exists z, z^{\prime} \cdot\left(x[f] z \wedge y[f] z^{\prime} \wedge z \not \chi_{\varnothing} z^{\prime}\right)} \\
x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \not \chi_{G} y \wedge c \Rightarrow x[F] \wedge(\neg y[F \cup G] \vee x \neq \neq F \backslash G y) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G y \wedge c \\
\text { More Replacement Rules }
\end{gathered}
$$

$x[F]=$ " x has no feature outside F "
$x \not \chi_{G} y=$ "there is a feature outside G that differentiates x and y "

- either it is in F,
- or it is not,

Negation: new players, new rules

$$
\begin{gathered}
x \neq F y:=\bigvee_{f \in F}\binom{\exists z^{\prime} \cdot\left(x[f] \uparrow \wedge y[f] z^{\prime}\right) \vee \exists z \cdot(x[f] z \wedge y[f] \uparrow)}{\vee \exists z, z^{\prime} \cdot\left(x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime}\right)} \\
x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \nsim G y \wedge c \Rightarrow x[F] \wedge(\neg y[F \cup G] \vee x \neq \neq F \backslash G y) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G y \wedge c \\
\text { More Replacement Rules }
\end{gathered}
$$

$x[F]=$ " x has no feature outside F "
$x \not \chi_{G} y=$ "there is a feature outside G that differentiates x and y "

- either it is in F, and we can list all the cases;
- or it is not,

Negation: new players, new rules

$$
\begin{gathered}
x \not \neq F_{F} y:=\bigvee_{f \in F}\binom{\exists z^{\prime} \cdot\left(x[f] \uparrow \wedge y[f] z^{\prime}\right) \vee \exists z \cdot(x[f] z \wedge y[f] \uparrow)}{\vee \exists z, z^{\prime} \cdot\left(x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime}\right)} \\
x[F] \wedge \neg x[G] \wedge c \Rightarrow x[F] \wedge x\langle F \backslash G\rangle \wedge c \\
x[F] \wedge x \not \chi_{G} y \wedge c \Rightarrow x[F] \wedge\left(\neg y[F \cup G] \vee x \neq \not_{F \backslash G} y\right) \wedge c \\
x \dot{\sim}_{F} y \wedge x \not \chi_{G} y \wedge c \Rightarrow x \dot{\sim}_{F} y \wedge x \neq F \backslash G y \wedge c \\
\text { More Replacement Rules }
\end{gathered}
$$

$x[F]=$ " x has no feature outside F "
$x \not \chi_{G} y=$ "there is a feature outside G that differentiates x and y "

- either it is in F, and we can list all the cases;
- or it is not, and since $x[F]$ then $\neg y[F \cup G]$.

Properties

Lemma

The constraint system terminates and yields a clause that is equivalent to the first one.

Properties

Lemma

The constraint system terminates and yields a clause that is equivalent to the first one.

Lemma

Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- c is in normal form;
- $\mathcal{V}\left(g_{c}\right) \cap X=\varnothing$;
- every literal in l_{c} is about X;
- there is no $y[f] x$ with $x \in X$ and $y \notin X$.

Then c is equivalent to g_{c}.

Does that even terminate?

$$
\begin{aligned}
& \text { R-NSim-Fence: } \\
& x[F] \wedge x \not \nsim G_{G} y \wedge c \\
& \Rightarrow \quad x[F] \wedge\left(\neg y[F \cup G] \vee x \not \neq F \backslash G^{\Rightarrow} y\right) \wedge c
\end{aligned}
$$

Does that even terminate?

$$
\begin{aligned}
& \text { R-NSim-FEnCE }(\text { for } F=\{f\} \text { and } G=\varnothing) \text { : } \\
& x[\{f\}] \wedge x \not \nsim \varnothing_{\varnothing} \wedge c \\
& \Rightarrow \quad x[\{f\}] \wedge(\neg y[\{f\}] \vee x \neq f y) \wedge c
\end{aligned}
$$

Does that even terminate?

$$
\begin{aligned}
& \text { R-NSim-FEnCe }(\text { for } F=\{f\} \text { and } G=\varnothing \text {): } \\
& x[\{f\}] \wedge x \not \chi_{\varnothing} y \wedge c \\
& \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \not \chi_{\varnothing} z^{\prime} \wedge x[\{f]
\end{aligned}
$$

Does that even terminate?

$$
\begin{aligned}
& \begin{array}{cl}
\vdots & \text { R-NSim-Fence (for } F=\{f\} \text { and } G=\varnothing \text {): } \\
\mathrm{f} \mid & x[\{f\}] \wedge x \not \subset \varnothing y \wedge c \\
\cdots y_{0} & \Rightarrow \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \not \supset \varnothing z^{\prime} \wedge x[\{f
\end{array} \\
& x_{0}[\{f\}] \\
& \text { to } \\
& \begin{array}{ll}
\vdots & \text { R-NSim-Fence (for } F=\{f\} \text { and } G=\varnothing \text {): } \\
\mathrm{f} \mid & x[\{f\}] \wedge x \not \subset \varnothing y \wedge c \\
\hdashline y_{0} & \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime} \wedge x[\{f) \\
&
\end{array} \\
& \begin{array}{ll}
\vdots & \text { R-NSim-Fence (for } F=\{f\} \text { and } G=\varnothing \text {): } \\
\mathrm{f} \mid & x[\{f\}] \wedge x \not \subset \varnothing y \wedge c \\
\hdashline y_{0} & \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime} \wedge x[\{f) \\
&
\end{array} \\
& \text { f } \\
& x_{1}[\{f\}] \\
& \text { f } \\
& x_{2}[\{f\}] \\
& \text { f } \\
& \text { f } \\
& x_{n}[\{f\}] \\
& \text { f } \\
& \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \not \chi_{\varnothing} z^{\prime} \wedge x[\{f
\end{aligned}
$$

Does that even terminate?

$$
\begin{aligned}
& \text { R-NSim-Fence (for } F=\{f\} \text { and } G=\varnothing \text {): } \\
& x_{0}[\{f\}] \\
& \nsim \varnothing \\
& \text { f } \\
& x[\{f\}] \wedge x \not \not \varnothing \varnothing y \wedge c \\
& \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \not \chi_{\varnothing} z^{\prime} \wedge x[\{f \\
& \text { - R-NSim-Fence with } x_{0} \text { and } y_{0} \text {; } \\
& \text { f } \\
& x_{n}[\{f\}] \\
& \text { f } \\
& \text { f } \\
& x_{1}[\{f\}] \\
& \mathrm{f} \\
& x_{2}[\{f\}] \\
& \text { f } \\
& \text { f }
\end{aligned}
$$

Does that even terminate?

$\exists y_{1}, z_{1}$.		R-NSim-Fence (for $F=\{f\}$ and $G=\varnothing$):
	f	
$x_{0}[\{f\}]$	y_{0}	$x[\{f\}] \wedge x \nsim \varnothing y \wedge c$
$\mathrm{f} \mid \mathrm{f}$	f	$\Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime} \wedge x[\{f$
$x_{1}[\{f\}] \quad z_{1}$	$\not \chi_{\varnothing} \quad y_{1}$	- R-nsim-Fence with x_{0} and y_{0};
f		
$x_{2}[\{f\}]$		
f \|		
\vdots		
f		
$x_{n}[\{f\}]$		
f		

Does that even terminate?

$\exists y_{1}, z_{1}$.		R-NSim-Fence (for $F=\{f\}$ and $G=\varnothing$):
$x_{0}[\{f\}]$	$\underset{y_{0}}{\mathrm{f}}$	$\begin{aligned} & x[\{f\}] \wedge x \not \not \varnothing \varnothing y \wedge c \\ & \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \not{ }^{\prime} z^{\prime} \wedge x[\{f \end{aligned}$
f ¢	f	
$x_{1}[\{f\}] \quad z_{1}$	$\not \chi_{\varnothing} \quad y_{1}$	- R-nsim-Fence with x_{0} and y_{0};
${ }_{\mathrm{f}}$		- S-Feats with x_{1} and z_{1}
$x_{2}[\{f\}]$		
f \|		
\vdots		
f		
$x_{n}[\{f\}]$		
$\mathrm{f} \mid$		

Does that even terminate?

$\exists y_{1}$		R-NSim-Fence (for $F=\{f\}$ and $G=\varnothing$):
$\begin{gathered} x_{0}[\{f\}] \\ \mathbf{f} \mid \end{gathered}$	$\begin{gathered} \mathrm{f} \mid \\ y_{0} \\ \mathrm{f} \mid \end{gathered}$	$\begin{aligned} & x[\{f\}] \wedge x \not \subset \varnothing y \wedge c \\ & \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \not \chi_{\varnothing} z^{\prime} \wedge x[\{f \end{aligned}$
$\begin{aligned} & x_{1}[\{f\}] \\ & \quad \mathrm{f} \mid \end{aligned}$	$\not \chi_{\infty} \quad y_{1}$	- R-nsim-Fence with x_{0} and y_{0}; - S-Feats with x_{1} and z_{1}
$\begin{gathered} x_{2}[\{f\}] \\ \mathbf{f} \mid \end{gathered}$		
f		
$x_{n}[\{f\}]$		

Does that even terminate?

Does that even terminate?

$\exists y_{1}, y_{2}, z_{2}$.		R-NSim-Fence (for $F=\{f\}$ and $G=\varnothing$):
$x_{0}[\{f\}]$	f ${ }_{\text {¢ }}{ }_{0}$	$\begin{aligned} & x[\{f\}] \wedge x \not \chi_{\varnothing} y \wedge c \\ & \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \not \chi_{\varnothing} z^{\prime} \wedge x[\{f \end{aligned}$
f	f	
$x_{1}[\{f\}]$	y_{1}	- R-NSim-Fence with x_{0} and y_{0};
f f	f	- S-Feats with x_{1} and z_{1}
$x_{2}[\{f\}] \quad z_{2}$	to y_{2}	- R-NSim-Fence with x_{1} and y_{1};
f		
f		
$x_{n}[\{f\}]$		
f		

Does that even terminate?

$\exists y_{1}, y_{2}, z_{2}$.		R-NSim-Fence (for $F=\{f\}$ and $G=\varnothing$):
$x_{0}[\{f\}]$	f y_{0}	$\begin{aligned} & x[\{f\}] \wedge x \nsim \varnothing y \wedge c \\ & \Rightarrow \quad \exists z, z^{\prime} \cdot x[f] z \wedge y[f] z^{\prime} \wedge z \nsim \varnothing z^{\prime} \wedge x[\{j \end{aligned}$
f	f	
$x_{1}[\{f\}]$	y_{1}	- R-nSim-Fence with x_{0} and y_{0};
f	f	- S-Feats with x_{1} and z_{1}
$x_{2}[\{f\}] \quad z_{2}$	to y_{2}	- R-NSim-Fence with x_{1} and y_{1};
f		- S-Feats with x_{2} and z_{2}
f		
$x_{n}[\{f\}]$		
f		

Does that even terminate?

Does that even terminate?

Does that even terminate?

Table of Contents

1. Description of filesystems

Unix filesystems
Static description
Directory update
2. Constraints

Definitions
Basic constraints
Negation
3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula, look at the last quantifier bloc

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula, look at the last quantifier bloc:

- Universal

$$
\forall \exists \cdots \forall X \cdot c
$$

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula, look at the last quantifier bloc:

- Universal, switch it to existential:

$$
\forall \exists \cdots \forall X \cdot c \quad \Longrightarrow \quad \neg \exists \forall \cdots \exists X \cdot \neg c
$$

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula, look at the last quantifier bloc:

- Universal, switch it to existential:

$$
\forall \exists \cdots \forall X \cdot c \quad \Longrightarrow \quad \neg \exists \forall \cdots \exists X \cdot \neg c
$$

- Existential:

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula, look at the last quantifier bloc:

- Universal, switch it to existential:

$$
\forall \exists \cdots \forall X \cdot c \quad \Longrightarrow \quad \neg \exists \forall \cdots \exists X \cdot \neg c
$$

- Existential:
- If there is an other bloc before

$$
\forall \exists \cdots \forall Y \cdot \exists X \cdot c
$$

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula, look at the last quantifier bloc:

- Universal, switch it to existential:

$$
\forall \exists \cdots \forall X \cdot c \quad \Longrightarrow \quad \neg \exists \forall \cdots \exists X \cdot \neg c
$$

- Existential:
- If there is an other bloc before, use the given technique:

$$
\forall \exists \cdots \forall Y \cdot \exists X \cdot c \quad \Longrightarrow \quad \forall \exists \cdots \forall Y, X^{\prime} \cdot c^{\prime}
$$

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula, look at the last quantifier bloc:

- Universal, switch it to existential:

$$
\forall \exists \cdots \forall X \cdot c \quad \Longrightarrow \quad \neg \exists \forall \cdots \exists X \cdot \neg c
$$

- Existential:
- If there is an other bloc before, use the given technique:

$$
\forall \exists \cdots \forall Y \cdot \exists X \cdot c \quad \Longrightarrow \quad \forall \exists \cdots \forall Y, X^{\prime} \cdot c^{\prime}
$$

- If not

Weak Quantifier Elimination

Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$.
Take any closed formula, look at the last quantifier bloc:

- Universal, switch it to existential:

$$
\forall \exists \cdots \forall X \cdot c \quad \Longrightarrow \quad \neg \exists \forall \cdots \exists X \cdot \neg c
$$

- Existential:
- If there is an other bloc before, use the given technique:

$$
\forall \exists \cdots \forall Y \cdot \exists X \cdot c \quad \Longrightarrow \quad \forall \exists \cdots \forall Y, X^{\prime} \cdot c^{\prime}
$$

- If not, then it is only a satisfiability question.

Weak Quantifier Elimination

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$."

Weak Quantifier Elimination

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$."

Here is what we have:
Lemma
Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- there is no $y[f] x$ with $x \in X$ and $y \notin X$.

Then c is equivalent to g_{c}.

Weak Quantifier Elimination

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$."

Here is what we have:
Lemma
Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- there is no $y[f] x$ with $x \in X$ and $y \notin X$.

Then c is equivalent to g_{c}.

Weak Quantifier Elimination

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$."

Here is what we have:
Lemma
Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- there is no $y[f] x$ with $x \in X$ and $y \notin X$.

Then c is equivalent to g_{c}.

Lukily:

$$
\exists X, x \cdot(y[f] x \wedge c)
$$

Weak Quantifier Elimination

Previous slide said: "Assume given a technique to transform $\exists X \cdot c$ into an equivalent $\forall X^{\prime} \cdot c^{\prime}$."

Here is what we have:
Lemma
Let c be a clause $c=g_{c} \wedge \exists X \cdot l_{c}$ such that:

- there is no $y[f] x$ with $x \in X$ and $y \notin X$.

Then c is equivalent to g_{c}.

Lukily:

$$
\exists X, x \cdot(y[f] x \wedge c) \quad \Rightarrow \quad \neg y[f] \uparrow \wedge \forall x \cdot(y[f] x \rightarrow \exists X \cdot c)
$$

Table of Contents

1. Description of filesystems

Unix filesystems
Static description
Directory update
2. Constraints

Definitions
Basic constraints
Negation
3. Usages

Decidability of the First-Order Theory
Automated Specification for Scripts: Proof of Concept

Demo!

