Deciding the First-Order Theory of an Algebra of Feature Trees with Updates

Nicolas Jeannerod Ralf Treinen

IJCAR'18 - July 16, 2018

Features Trees

\triangleright Unranked unordered trees.

\triangleright Least fixpoint of:

$$
\mathcal{F} \mathcal{T}=\mathcal{D} \times(\underset{\hat{i}}{\mathcal{F}} \rightsquigarrow \mathcal{F} \mathcal{T})
$$

Decorations (left abstract)

Infinite set of features

Partial function with finite domain

Origin of Feature Trees

\triangleright Computational linguistics
\triangleright Artificial intelligence
\triangleright (Constraint) (logic) programming
[eg. Smolka, '92]
[Aït-Kaci]
[Aït-Kaci, Backofen, Podelski, Smolka, Treinen, '94]

Our Use Case - The Unix Filesystem

First Order Logics of Feature Trees

Model of all the feature trees

Variables ranging over feature trees

Tree associated with y in ρ

Valuation from variables to feature trees

Finite set of feature constants

Known Decidability of First Order Logics

\triangleright FT: $\quad x \doteq y \quad x[f] y \quad x[f] \uparrow$
\triangleright CFT: $\quad x \doteq y \quad x[f] y \quad x[f] \uparrow \quad x[F]$
[Backofen, Smolka, '92]

[Backofen, '94]
[Backofen, Treinen, '94]

\triangleright FT with first-class features proven undecidable
[Treinen, '93]

Why We Need More

mkdir /home/jack

$$
C\left(r, r^{\prime}\right)=\exists x, x^{\prime}, y^{\prime}\left\{\begin{array}{l}
r[\text { home }] x \wedge x[\mathrm{jack}] \uparrow \\
\wedge r^{\prime}[\text { home }] x^{\prime} \wedge x^{\prime}[\mathrm{jack}] y^{\prime} \wedge y^{\prime}[\varnothing] \\
\wedge r^{\prime} \text { is } r \text { with home } \rightarrow x^{\prime} \wedge x^{\prime} \text { is } x \text { with jack } \rightarrow y^{\prime}
\end{array}\right.
$$

How To Reason About Update Constraints?

\triangleright Problem: It is completely asymmetric.

$$
y \text { is } x \text { with } f \rightarrow v
$$

Resulting tree Source tree Subtree
\triangleright Hard to simplify when we have several of them:

$$
\exists x \cdot\binom{y \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } x \text { with } g \rightarrow w}
$$

Equivalent Presentation - The Similarity

$$
\mathcal{F} \mathcal{T}, \rho \quad \vDash \quad x \sim_{F} y \quad \text { iff }\left.\quad \rho(x)\right|_{c_{F}}=\left.\rho(y)\right|_{c_{F}}
$$

\triangleright Same expressivity:

$$
\begin{aligned}
& y \text { is } x \text { with } f \rightarrow z \quad \leftrightarrow \quad y \sim_{\{f\}} x \wedge y[f] z \\
& x \sim_{\{f\}} y \quad \leftrightarrow \quad \exists z, v \cdot\binom{z \text { is } x \text { with } f \rightarrow v}{\wedge z \text { is } y \text { with } f \rightarrow v}
\end{aligned}
$$

\triangleright Convenient to manipulate:
\triangleright Equivalence relation for every F.
\triangleright But also:

$$
\begin{array}{lll}
x \sim_{F} y \wedge y \sim_{G} z & \rightarrow & x \sim_{F \cup G} z \\
x \sim_{F} y \wedge x \sim_{G} y & \leftrightarrow & x \sim_{F \cap G} y
\end{array}
$$

\triangleright Similar technique found in arrays.

Our Contribution

Theorem

The first order theory of feature trees with update is decidable.

First Step: Existential Fragment

$$
\exists x, z \cdot\left(y[f] \underset{\sim}{x} \wedge \neg\left(x \sim_{\{h, i\}} y\right) \wedge_{\kappa} \cdots\right)
$$

Existential
quantification
on the outside

Positive and negative literals

Conjunctive clause

Principle of the Algorithm

\triangleright We have a set of transformation rules $l \Rightarrow r$.

```
| function normalize(c: clause):
    while some rule r applies to c:
        c = apply r to c
    return c
```

\triangleright The rules are equivalences in our model.
\triangleright The system terminates.
\triangleright Irreducible forms have nice properties.
\triangleright eg. they are either \perp or satisfiable.

Examples of Rules

Associative

Replacement of z by y in c

Simplification: features

$$
\exists X, z \cdot(x[f] y \wedge x[f] z \wedge c) \stackrel{\forall}{\Rightarrow} \exists X \cdot(x[f] y \wedge c\{z \mapsto y\})
$$

> Quantifications (omitted when irrelevant)

Clash: feature with absence

$$
x[f] y \wedge x[f] \uparrow \wedge c \quad \Rightarrow \quad \perp
$$

Propagation: feature
$(f \notin F)$

$$
x \sim_{F} y \wedge x[f] z \wedge c \quad \Rightarrow \quad x \sim_{F} y \wedge x[f] z \wedge y[f] z \wedge c
$$

Satisfiability of Irreducible Clauses

Theorem

Every irreducible clause that is not \perp is satisfiable.
\triangleright We need something stronger:
Lemma (Garbage collection)

Literals that do not talk about X

Literals that mention at least one variable of X
\triangleright irreducible,
\triangleright such that there is no $y[f] x$ with $y \notin X$ and $x \in X$.
Then

$$
\mathcal{F T} \models(\exists X \cdot(g \wedge l)) \leftrightarrow g
$$

First Order

$$
\forall \quad \exists \quad \wedge \quad \vee \quad \neg
$$

Quantifier Elimination

\triangleright Problem: our theory does not have the quantifier elimination property
\triangleright What is the meaning for y of:

$$
\exists x \cdot(y[f] x \wedge x[g] \uparrow)
$$

\triangleright Two possible solutions:
\triangleright Make the language richer
[Presburger, '29]
\triangleright with path constraints: $y[f][g] \uparrow$
\triangleright potentially leads to complex simplification rules.
\triangleright Weak Quantifier Elimination
[Malc'ev, '71]
\triangleright with a procedure: $\exists Y \cdot c \Rightarrow \forall Z \cdot d$
\triangleright we can eliminate all the quantifier blocks except one.

Switching Quantifiers

\triangleright With the lemma and an extra rule [Treinen, '97].
$z[g] \uparrow$ can propagate through

$$
x \sim_{\{h\}} z
$$

There is no u and i such that $u[i] z$: remove z

There can be only one such x
\triangleright We can turn all \exists into \forall which allows us to go for Weak Quantifier Elimination.
\triangleright With a procedure: $\exists Y \cdot c \kappa \Rightarrow \quad \forall Z \cdot d$

\triangleright Eliminate one quantifier alternation at a time.

Full Procedure

Conclusion

\triangleright Contribution:
\triangleright Feature tree with update.
\triangleright Decidability of first order theory.

Theorem

The first order theory of feature trees with update is decidable.
\triangleright Procedure parametrized by a theory of node decorations.
\triangleright Complexity: non-elementary lower bound.
\triangleright Perspectives:
\triangleright Implementation.
\triangleright Efficient implementation of a smaller fragment.
\triangleright Symbolic execution of Shell scripts.
\triangleright "Correctness of Linux Scripts" (http://colis.irif.fr).

