
1/20

Deciding the First-Order Theory
of an Algebra of Feature Trees with Updates

Nicolas Jeannerod Ralf Treinen

IJCAR’18 – July 16, 2018



2/20

Features Trees

. Unranked unordered trees.

d

f
d

g
d

i
d

d

f
d

g
d

h
d

i
d

f
d

g
d

i
d

. Least fixpoint of:

FT = D ×
(
F  FT

)

Decorations
(left abstract)

Infinite set
of features

Partial function
with finite domain



3/20

Origin of Feature Trees

. Computational linguistics [eg. Smolka, ’92]

. Artificial intelligence [Aı̈t-Kaci]

. (Constraint) (logic) programming [Aı̈t-Kaci, Backofen, Podelski, Smolka, Treinen, ’94]



4/20

Our Use Case – The Unix Filesystem

/

usr

lib share

etc home

jack



5/20

First Order Logics of Feature Trees

Equality FT , ρ |= x
.
= y iff ρ(x) = ρ(y)

Feature FT , ρ |= x[f ]y iff ρ(x)(f) = ρ(y)

Absence FT , ρ |= x[f ] ↑ iff f /∈ dom(ρ(x))

Fence FT , ρ |= x[F ] iff dom(ρ(x)) ⊂ F

Model of all
the feature trees

Variables ranging
over feature trees

Tree associated
with y in ρ

Valuation from variables
to feature trees

Feature constant

Finite set of feature constants

FT
CFT



6/20

Known Decidability of First Order Logics

. FT: x
.
= y x[f ]y x[f ] ↑ [Backofen, Smolka, ’92]

. CFT: x
.
= y x[f ]y x[f ] ↑ x[F ] [Backofen, ’94]

[Backofen, Treinen, ’94]

. FT with first-class features proven undecidable [Treinen, ’93]



7/20

Why We Need More

mkdir /home/jack

•

•

home

×

jack

•

•

home

•

jack

∅

C(r, r′) = ∃x, x′, y′


r[home]x ∧ x[jack] ↑
∧ r′[home]x′ ∧ x′[jack]y′ ∧ y′[∅]

∧ r′ is r with home→ x′ ∧ x′ is x with jack→ y′



8/20

How To Reason About Update Constraints?

. Problem: It is completely asymmetric.

y is x with f → v

Resulting tree Source tree Subtree

. Hard to simplify when we have several of them:

∃x ·
(

y is x with f → v
∧z is x with g → w

)



9/20

Equivalent Presentation – The Similarity

FT , ρ |= x ∼F y iff ρ(x)|cF = ρ(y)|cF

Finite set of feature constants
. Same expressivity:

y is x with f → z ↔ y ∼{f} x ∧ y[f ]z

x ∼{f} y ↔ ∃z, v ·
(

z is x with f → v
∧z is y with f → v

)
. Convenient to manipulate:

. Equivalence relation for every F .

. But also:
x ∼F y ∧ y ∼G z → x ∼F∪G z
x ∼F y ∧ x ∼G y ↔ x ∼F∩G y

. Similar technique found in arrays. [Stump, Barrett, Dill, Levitt, 2001]



10/20

Our Contribution

Theorem

The first order theory of feature trees with update is decidable.



11/20

First Step: Existential Fragment

∃x, z·
(
y[f ]x ∧ ¬(x ∼{h,i} y) ∧ · · ·

)
Existential

quantification
on the outside

Positive and
negative
literals

Conjunctive
clause



12/20

Principle of the Algorithm

. We have a set of transformation rules l⇒ r.

. function normalize(c: clause ):

while some rule r applies to c:

c = apply r to c

return c

. The rules are equivalences in our model.

. The system terminates.

. Irreducible forms have nice properties.
. eg. they are either ⊥ or satisfiable.



13/20

Examples of Rules

Simplification: features

∃X, z ·
(
x[f ]y ∧ x[f ]z ∧ c

)
⇒ ∃X ·

(
x[f ]y ∧ c{z 7→ y}

)

Clash: feature with absence
x[f ]y ∧ x[f ] ↑ ∧c ⇒ ⊥

Propagation: feature (f /∈F )

x ∼F y ∧ x[f ]z ∧ c ⇒ x ∼F y ∧ x[f ]z ∧ y[f ]z ∧ c

Associative
commutative
conjunction

Equivalences
in our model

Replacement
of z by y in c

Quantifications
(omitted when irrelevant)

(Not shown)
side-conditions
for termination



14/20

Satisfiability of Irreducible Clauses

Theorem

Every irreducible clause that is not ⊥ is satisfiable.

. We need something stronger:

Lemma (Garbage collection)

∃X · (g ∧ l)

. irreducible,

. such that there is no y[f ]x with y /∈ X and x ∈ X .

Then

FT |= (∃X · (g ∧ l))↔ g

Literals that do
not talk about X

Literals that mention
at least one variable of X



15/20

First Order

∀ ∃ ∧ ∨ ¬



16/20

Quantifier Elimination

. Problem: our theory does not have the quantifier elimination property

. What is the meaning for y of:
∃x · (y[f ]x ∧ x[g] ↑)

. Two possible solutions:
. Make the language richer [Presburger, ’29]

. with path constraints: y[f ][g] ↑

. potentially leads to complex simplification rules.

. Weak Quantifier Elimination [Malc’ev, ’71]
. with a procedure: ∃Y · c ⇒ ∀Z · d
. we can eliminate all the quantifier blocks except one.



17/20

Switching Quantifiers

. With the lemma and an extra rule [Treinen, ’97].

∃x, z · (y[f ]x ∧ x ∼{h} z ∧ z[g] ↑ )

∃x, z · (y[f ]x ∧ x ∼{h} z ∧ x[g] ↑ ∧ z[g] ↑ )

∃x · ( y[f ]x ∧ x[g] ↑)

¬y[f ] ↑ ∧ ∀x · (y[f ]x→ x[g] ↑)

. We can turn all ∃ into ∀ which allows us to go for Weak Quantifier Elimination.

Apply the system

Apply the lemma

Switch remaining
∃ to ∀

z[g] ↑ can
propagate through

x ∼{h} z

There is no u and
i such that u[i]z:

remove z

There can be
only one such x



18/20

Weak Quantifier Elimination [Malc’ev, ’71]

. With a procedure: ∃Y · c ⇒ ∀Z · d

∀ · · · ∀ · ∃ · · · ∃ · · · ∀X · ∃Y · d

∀ · · · ∀ · ∃ · · · ∃ · · · ∀X · ∃Y ·
(∨

i ci

)
∀ · · · ∀ · ∃ · · · ∃ · · · ∀X ·

(∨
i ∃Y · ci

)
∀ · · · ∀ · ∃ · · · ∃ · · · ∀X ·

(∨
i ∀Zi · di

)
∀ · · · ∀ · ∃ · · · ∃ · · · ∀ (X ∪

⋃
i Z

′
i) · (

∨
i d

′
i)

Quantifier-free

Quantifier-free
conjunction

. Eliminate one quantifier alternation at a time.

Disjunctive
normal form

Distribute
∃ over ∨

Apply
procedure

Prenex normal form
with renaming



19/20

Full Procedure

Closed formula

PNF + DNF + ...

Apply a rule on
the innermost part

Reducible
formula

Eliminate and switch
existential quantifiers

Irreducible
formula

Formula with
quantifiers

Quantifier-free
formula

Must be closed.
Otherwise, the formula
is not quantifier-free.



20/20

Conclusion

. Contribution:
. Feature tree with update.
. Decidability of first order theory.

Theorem
The first order theory of feature trees with update is decidable.

. Procedure parametrized by a theory of node decorations.

. Complexity: non-elementary lower bound. [Vorobyov, ’96]

. Perspectives:
. Implementation.
. Efficient implementation of a smaller fragment.
. Symbolic execution of Shell scripts.
. “Correctness of Linux Scripts” (http://colis.irif.fr).

http://colis.irif.fr

	First Step: Existential Fragment
	First Order
	Appendix

