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The CoLiS project

Goal: apply formal methods to the quality assessment of
Debian maintainer scripts.

Initial idea: use methods from formal program verification.

Example of a use case: A postrm that deletes files from
unrelated packages, see for instance Ralf’s talk at Debconf’16
for a concrete example.

We only look at Posix shell scripts which are more than 99%
of our maintainer scripts.

We knew from the beginning that this is an ambitious goal:
We will at best succeed partially.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris
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What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What we will present today

Analyzing the behavior of Maintainer Scripts

Caveat 1: we will never be able to analyze all the > 30.000
maintainer scripts.

Caveat 2: we have to cut corners in the model, and perform
approximations.

Focus on finding bugs (as opposed to guaranteeing
correctness).
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Semantics of Shell Scripts

First step: reasoning about one script at a time.

Starting point: we need a language to talk about the
semantics of scripts: symbolic representation.

We do this both for the case of success and of failure of the
script.

We need a way to calculate effectively on these
representations, and to combine them (sequential
composition, conditional composition, . . .)

Analogy: Using regular expressions to talk about sets of
strings.
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Semantics of Shell Scripts

First step: reasoning about one script at a time.

Starting point: we need a language to talk about the
semantics of scripts: symbolic representation.

We do this both for the case of success and of failure of the
script.

We need a way to calculate effectively on these
representations, and to combine them (sequential
composition, conditional composition, . . .)

Analogy: Using regular expressions to talk about sets of
strings.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris
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Tree Constraints

Our current approach: use predicate logic.

Predicate logic allows us to talk about relations: in our case
the relation between the intial configuration, and the possible
configurations obtained by the execution.

Special purpose logic for talking about a restricted form of
tree transformations.

Effective calculations on formulas.
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f ]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f ]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f ]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f ]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x
(dir)

q

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris
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∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f ]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x
(dir)

q

×

f

r ′

∃x ′
(dir)

q

“∼{q}”

∼{f }

∃y ′
(empty dir)

f
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Using the Logic: sequential composition

cmd1(in, out) cmd2(in, out)

Compose

∃tmp.(cmd1(in, tmp) ∧ cmd2(tmp, out))

Simplify

cmd1;2(in, out) ⊥
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Symbolic Execution

Idea: We simulate the script, and collect in our logical
formalism its effect on the file system.

More precisely: Mixed concrete/symbolic execution: We only
describe symbolically the effect on the file system, other
effects like variable assignements etc. are simulated concretely.

We know the parameters the script is invoked on, and we
make reasonable assumptions on environment variables.
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Installation Scenarios

Second Step: scenarios, like this one:

More (and more complex) scenarios: see the policy.
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Failures and bad states

Three different kinds of observations:

1 The failure (exit code > 0) of a maintainer script
2 The failure of a request to dpkg
3 The state a package is in at the end of the process

As one can see in the scenarios:

it is possible that a request fails, but still all packages are in a
consistent state: when the error unwind has worked.
there are situations where some script may fail, and still the
request succeeds in the end.
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Failures and Bugs

Policy 6.1 says:
The package management system looks at the exit status
from these scripts. It is important that they exit with a
non-zero status if there is an error, so that the package
management system can stop its processing... It is also
important, of course, that they exit with a zero status if
everything went well.

Consequence: A possible failure case of a script is not
necessarily a bug!
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Infrastructure

Corpus of 13906 packages containing 33320 maintainer scripts
extracted on 2019-03-18 from a Debian mirror

Corpus of 165 additional files which are included by
maintainer scripts

Using the Contents file to simulate dpkg -L

Running for 20 minutes on a 80 cores Intel(R) Xeon(R) CPU
at 2.20GHz.
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sgml-base preinst

Script snippet:

if [ ! -d /var/lib/sgml -base ]

then

mkdir /var/lib/sgml -base 2>/dev/null

fi

Problem: If /var/lib/sgml-base exists and is not a directory
this fails silently

We have asked on the mailing list for confirmation that this is
a bug.

https://bugs.debian.org/929706
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armagetronad-dedicated postrm

Script snippet:

if [ "$1" = "purge" ]; then

rm -r /var/games/armagetronad

rmdir --ignore -fail -on -non -empty /var/games

fi

Will fail if /var/games/armagedtronad does not exist.

Do we have to account for this case?

Policy, section 6.2: Maintainer scripts have to be idempotent.

Note that if a postrm purge succeeds the package is gone
completely.

We still think this is a bug since the script may fail later.
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Idempotency

Debian policy (section 6.2) requires maintainer scripts to be
idempotent.

Mathematically, i is idempotent when

i ◦ i = i

The sense in Debian is much larger:
If the first call failed, or aborted half way through for some
reason, the second call should merely do the things that
were left undone the first time, if any, and exit with a
success status if everything is OK.
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Idempotency

Debian policy (section 6.2) requires maintainer scripts to be
idempotent.

Mathematically, i is idempotent when

i ◦ i = i

The sense in Debian is much larger:
If the first call failed, or aborted half way through for some
reason, the second call should merely do the things that
were left undone the first time, if any, and exit with a
success status if everything is OK.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris
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courier-filter-perl postrm

Script snippet:

case "$1" in

purge )

rm /etc/courier/filters/courier -filter -perl.conf

;;

esac

Will fail when .../courier-filter-perl.conf does not exist:
script not idempotent.

However, this is at the end of script, so when it succeeds and
removes the file the package is gone, so this seems purely
formal.
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

oz postrm

Script snippet:

FILE="/etc/oz/id_rsa -icicle -gen"

case "$1" in

purge)

if [ -f $FILE ]; then

rm $FILE $FILE.pub

fi

;;

esac

Fails if $FILE exists but $FILE.pub does not.

In that case, a second invocation of postrm purge will succeed!

Even if it is not against idempotency, this behavior is at least
strange and annoying.
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

oz postrm

Script snippet:

FILE="/etc/oz/id_rsa -icicle -gen"

case "$1" in

purge)

if [ -f $FILE ]; then

rm $FILE $FILE.pub

fi

;;

esac

Fails if $FILE exists but $FILE.pub does not.

In that case, a second invocation of postrm purge will succeed!

Even if it is not against idempotency, this behavior is at least
strange and annoying.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris
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Bugs found by Colis

Listing: https://bugs.debian.org/cgi-bin/pkgreport.

cgi?tag=colis-shparser;users=treinen@debian.org

148 bugs filed so far, 90 of which are solved.

So far a great majority are on a trivial level (like missing
set -e), or on the level of syntactic structure (requires
morbig, hence is not trivial).

How did we find the last four bugs:

The first two from bad package states detected by our tool,
then investigation by hand.
The last two where found by running our tool on a dedicated
scenario for testing a subcase of idempotency.
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Ongoing Work

Include simulation of the unpack phase.

Increase the number of script we can handle, by modeling
more commands.

Being more precise about idempotency: checking equivalence
of the executing a script once or twice.

This uses our result on decidability of the logic.

Investigate other properties, like commutation of scripts.

Using tree transducers to represent the semantics of scripts.
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Symbolic Execution of Maintainer Scripts



Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Ongoing Work

Include simulation of the unpack phase.

Increase the number of script we can handle, by modeling
more commands.

Being more precise about idempotency: checking equivalence
of the executing a script once or twice.

This uses our result on decidability of the logic.

Investigate other properties, like commutation of scripts.

Using tree transducers to represent the semantics of scripts.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris
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Thank you

Joint work with the people from the Colis project.

Project ANR-15-CE25-0001 funded by Agence Nationale de
Recherche.

October 2015 – September 2020

http://colis.irif.fr/
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dpkg-maintscript-helper

This is a utility that may be used by maintainer scripts

Script snippet:

find "$PATHNAME" -mindepth 1 -print0 | \

xargs -0 -i% mv -f "%" "$ABS_SYMLINK_TARGET/"

Fails when "$PATHNAME" contains subdirectories

Solution: add option "-maxdepth 1" to find

https://bugs.debian.org/922799 (our proposed fix was
accepted)
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Scenario: fresh installation
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Scenario: installation of previously removed package
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Scenario: upgrade of an installed package
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Scenario: removal of an installed package
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Scenario: purge of a removed package
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Scenario: purge of an installed package
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