
Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Symbolic Execution of Maintainer Scripts

Nicolas Jeannerod and Ralf Treinen
joint work with Benedikt Becker, Claude Marché, Mihaela

Sighireanu, Yann Régis-Gianas

IRIF, Université de Paris

July 21, 2019

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Plan

1 Introduction

2 Symbolic Execution of Scripts

3 Symbolic Execution of Maintainer Scripts

4 Demo Time

5 Detected Bugs

6 Conclusions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Plan

1 Introduction

2 Symbolic Execution of Scripts

3 Symbolic Execution of Maintainer Scripts

4 Demo Time

5 Detected Bugs

6 Conclusions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

The CoLiS project

Goal: apply formal methods to the quality assessment of
Debian maintainer scripts.

Initial idea: use methods from formal program verification.

Example of a use case: A postrm that deletes files from
unrelated packages, see for instance Ralf’s talk at Debconf’16
for a concrete example.

We only look at Posix shell scripts which are more than 99%
of our maintainer scripts.

We knew from the beginning that this is an ambitious goal:
We will at best succeed partially.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

The CoLiS project

Goal: apply formal methods to the quality assessment of
Debian maintainer scripts.

Initial idea: use methods from formal program verification.

Example of a use case: A postrm that deletes files from
unrelated packages, see for instance Ralf’s talk at Debconf’16
for a concrete example.

We only look at Posix shell scripts which are more than 99%
of our maintainer scripts.

We knew from the beginning that this is an ambitious goal:
We will at best succeed partially.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

The CoLiS project

Goal: apply formal methods to the quality assessment of
Debian maintainer scripts.

Initial idea: use methods from formal program verification.

Example of a use case: A postrm that deletes files from
unrelated packages, see for instance Ralf’s talk at Debconf’16
for a concrete example.

We only look at Posix shell scripts which are more than 99%
of our maintainer scripts.

We knew from the beginning that this is an ambitious goal:
We will at best succeed partially.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

The CoLiS project

Goal: apply formal methods to the quality assessment of
Debian maintainer scripts.

Initial idea: use methods from formal program verification.

Example of a use case: A postrm that deletes files from
unrelated packages, see for instance Ralf’s talk at Debconf’16
for a concrete example.

We only look at Posix shell scripts which are more than 99%
of our maintainer scripts.

We knew from the beginning that this is an ambitious goal:
We will at best succeed partially.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

The CoLiS project

Goal: apply formal methods to the quality assessment of
Debian maintainer scripts.

Initial idea: use methods from formal program verification.

Example of a use case: A postrm that deletes files from
unrelated packages, see for instance Ralf’s talk at Debconf’16
for a concrete example.

We only look at Posix shell scripts which are more than 99%
of our maintainer scripts.

We knew from the beginning that this is an ambitious goal:
We will at best succeed partially.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What happened previously

Static syntactic analysis of Posix shell scripts.

Talks in 2018 at Fosdem, Minidebconf Hamburg, Debconf.

Static syntactical analysis of Posix shell scripts is far from
trivial.

The Morbig parser for Posix shell scripts.

First report of bugs on a relatively trivial level, like:

Missing strict mode
Wrong redirections
Wrong test expressions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What we will present today

Analyzing the behavior of Maintainer Scripts

Caveat 1: we will never be able to analyze all the > 30.000
maintainer scripts.

Caveat 2: we have to cut corners in the model, and perform
approximations.

Focus on finding bugs (as opposed to guaranteeing
correctness).

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What we will present today

Analyzing the behavior of Maintainer Scripts

Caveat 1: we will never be able to analyze all the > 30.000
maintainer scripts.

Caveat 2: we have to cut corners in the model, and perform
approximations.

Focus on finding bugs (as opposed to guaranteeing
correctness).

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What we will present today

Analyzing the behavior of Maintainer Scripts

Caveat 1: we will never be able to analyze all the > 30.000
maintainer scripts.

Caveat 2: we have to cut corners in the model, and perform
approximations.

Focus on finding bugs (as opposed to guaranteeing
correctness).

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

What we will present today

Analyzing the behavior of Maintainer Scripts

Caveat 1: we will never be able to analyze all the > 30.000
maintainer scripts.

Caveat 2: we have to cut corners in the model, and perform
approximations.

Focus on finding bugs (as opposed to guaranteeing
correctness).

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Plan

1 Introduction

2 Symbolic Execution of Scripts

3 Symbolic Execution of Maintainer Scripts

4 Demo Time

5 Detected Bugs

6 Conclusions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Semantics of Shell Scripts

First step: reasoning about one script at a time.

Starting point: we need a language to talk about the
semantics of scripts: symbolic representation.

We do this both for the case of success and of failure of the
script.

We need a way to calculate effectively on these
representations, and to combine them (sequential
composition, conditional composition, . . .)

Analogy: Using regular expressions to talk about sets of
strings.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Semantics of Shell Scripts

First step: reasoning about one script at a time.

Starting point: we need a language to talk about the
semantics of scripts: symbolic representation.

We do this both for the case of success and of failure of the
script.

We need a way to calculate effectively on these
representations, and to combine them (sequential
composition, conditional composition, . . .)

Analogy: Using regular expressions to talk about sets of
strings.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Semantics of Shell Scripts

First step: reasoning about one script at a time.

Starting point: we need a language to talk about the
semantics of scripts: symbolic representation.

We do this both for the case of success and of failure of the
script.

We need a way to calculate effectively on these
representations, and to combine them (sequential
composition, conditional composition, . . .)

Analogy: Using regular expressions to talk about sets of
strings.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Semantics of Shell Scripts

First step: reasoning about one script at a time.

Starting point: we need a language to talk about the
semantics of scripts: symbolic representation.

We do this both for the case of success and of failure of the
script.

We need a way to calculate effectively on these
representations, and to combine them (sequential
composition, conditional composition, . . .)

Analogy: Using regular expressions to talk about sets of
strings.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Semantics of Shell Scripts

First step: reasoning about one script at a time.

Starting point: we need a language to talk about the
semantics of scripts: symbolic representation.

We do this both for the case of success and of failure of the
script.

We need a way to calculate effectively on these
representations, and to combine them (sequential
composition, conditional composition, . . .)

Analogy: Using regular expressions to talk about sets of
strings.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Tree Constraints

Our current approach: use predicate logic.

Predicate logic allows us to talk about relations: in our case
the relation between the intial configuration, and the possible
configurations obtained by the execution.

Special purpose logic for talking about a restricted form of
tree transformations.

Effective calculations on formulas.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Tree Constraints

Our current approach: use predicate logic.

Predicate logic allows us to talk about relations: in our case
the relation between the intial configuration, and the possible
configurations obtained by the execution.

Special purpose logic for talking about a restricted form of
tree transformations.

Effective calculations on formulas.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Tree Constraints

Our current approach: use predicate logic.

Predicate logic allows us to talk about relations: in our case
the relation between the intial configuration, and the possible
configurations obtained by the execution.

Special purpose logic for talking about a restricted form of
tree transformations.

Effective calculations on formulas.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Tree Constraints

Our current approach: use predicate logic.

Predicate logic allows us to talk about relations: in our case
the relation between the intial configuration, and the possible
configurations obtained by the execution.

Special purpose logic for talking about a restricted form of
tree transformations.

Effective calculations on formulas.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x

q

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x
(dir)

q

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x
(dir)

q

×

f

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x
(dir)

q

×

f

r ′

∃x ′

q

“∼{q}”

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x
(dir)

q

×

f

r ′

∃x ′

q

“∼{q}”

∼{f }

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x
(dir)

q

×

f

r ′

∃x ′
(dir)

q

“∼{q}”

∼{f }

∃y ′
(empty dir)

f

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

r

∃x
(dir)

q

×

f

r ′

∃x ′
(dir)

q

“∼{q}”

∼{f }

∃y ′
(empty dir)

f

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Example Specification: mkdir q/f

Success

∃x , x ′, y ′·
resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑
∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x ′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Failure File exists ∃y · resolve(r , cwd , q/f , y) ∧ r
.

= r ′

Failure
No such

file
noresolve(r , cwd , q) ∧ r

.
= r ′

Failure Not a dir ∃x · resolve(r , cwd , q, x) ∧ ¬dir(x) ∧ r
.

= r ′

Outcome of the
Specification Case

Description Text
(for human beings)

Formula in our logic

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Using the Logic: sequential composition

cmd1(in, out) cmd2(in, out)

Compose

∃tmp.(cmd1(in, tmp) ∧ cmd2(tmp, out))

Simplify

cmd1;2(in, out) ⊥

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Using the Logic: sequential composition

cmd1(in, out) cmd2(in, out)

Compose

∃tmp.(cmd1(in, tmp) ∧ cmd2(tmp, out))

Simplify

cmd1;2(in, out) ⊥

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Using the Logic: sequential composition

cmd1(in, out) cmd2(in, out)

Compose

∃tmp.(cmd1(in, tmp) ∧ cmd2(tmp, out))

Simplify

cmd1;2(in, out) ⊥

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Symbolic Execution

Idea: We simulate the script, and collect in our logical
formalism its effect on the file system.

More precisely: Mixed concrete/symbolic execution: We only
describe symbolically the effect on the file system, other
effects like variable assignements etc. are simulated concretely.

We know the parameters the script is invoked on, and we
make reasonable assumptions on environment variables.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Symbolic Execution

Idea: We simulate the script, and collect in our logical
formalism its effect on the file system.

More precisely: Mixed concrete/symbolic execution: We only
describe symbolically the effect on the file system, other
effects like variable assignements etc. are simulated concretely.

We know the parameters the script is invoked on, and we
make reasonable assumptions on environment variables.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Symbolic Execution

Idea: We simulate the script, and collect in our logical
formalism its effect on the file system.

More precisely: Mixed concrete/symbolic execution: We only
describe symbolically the effect on the file system, other
effects like variable assignements etc. are simulated concretely.

We know the parameters the script is invoked on, and we
make reasonable assumptions on environment variables.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Plan

1 Introduction

2 Symbolic Execution of Scripts

3 Symbolic Execution of Maintainer Scripts

4 Demo Time

5 Detected Bugs

6 Conclusions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Installation Scenarios

Second Step: scenarios, like this one:

More (and more complex) scenarios: see the policy.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Installation Scenarios

Second Step: scenarios, like this one:

More (and more complex) scenarios: see the policy.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and bad states

Three different kinds of observations:

1 The failure (exit code > 0) of a maintainer script
2 The failure of a request to dpkg
3 The state a package is in at the end of the process

As one can see in the scenarios:

it is possible that a request fails, but still all packages are in a
consistent state: when the error unwind has worked.
there are situations where some script may fail, and still the
request succeeds in the end.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and bad states

Three different kinds of observations:

1 The failure (exit code > 0) of a maintainer script
2 The failure of a request to dpkg
3 The state a package is in at the end of the process

As one can see in the scenarios:

it is possible that a request fails, but still all packages are in a
consistent state: when the error unwind has worked.
there are situations where some script may fail, and still the
request succeeds in the end.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and bad states

Three different kinds of observations:

1 The failure (exit code > 0) of a maintainer script
2 The failure of a request to dpkg
3 The state a package is in at the end of the process

As one can see in the scenarios:

it is possible that a request fails, but still all packages are in a
consistent state: when the error unwind has worked.
there are situations where some script may fail, and still the
request succeeds in the end.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and bad states

Three different kinds of observations:

1 The failure (exit code > 0) of a maintainer script
2 The failure of a request to dpkg
3 The state a package is in at the end of the process

As one can see in the scenarios:

it is possible that a request fails, but still all packages are in a
consistent state: when the error unwind has worked.
there are situations where some script may fail, and still the
request succeeds in the end.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and bad states

Three different kinds of observations:

1 The failure (exit code > 0) of a maintainer script
2 The failure of a request to dpkg
3 The state a package is in at the end of the process

As one can see in the scenarios:

it is possible that a request fails, but still all packages are in a
consistent state: when the error unwind has worked.
there are situations where some script may fail, and still the
request succeeds in the end.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and bad states

Three different kinds of observations:

1 The failure (exit code > 0) of a maintainer script
2 The failure of a request to dpkg
3 The state a package is in at the end of the process

As one can see in the scenarios:

it is possible that a request fails, but still all packages are in a
consistent state: when the error unwind has worked.
there are situations where some script may fail, and still the
request succeeds in the end.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and bad states

Three different kinds of observations:

1 The failure (exit code > 0) of a maintainer script
2 The failure of a request to dpkg
3 The state a package is in at the end of the process

As one can see in the scenarios:

it is possible that a request fails, but still all packages are in a
consistent state: when the error unwind has worked.
there are situations where some script may fail, and still the
request succeeds in the end.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and Bugs

Policy 6.1 says:
The package management system looks at the exit status
from these scripts. It is important that they exit with a
non-zero status if there is an error, so that the package
management system can stop its processing... It is also
important, of course, that they exit with a zero status if
everything went well.

Consequence: A possible failure case of a script is not
necessarily a bug!

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and Bugs

Policy 6.1 says:
The package management system looks at the exit status
from these scripts. It is important that they exit with a
non-zero status if there is an error, so that the package
management system can stop its processing... It is also
important, of course, that they exit with a zero status if
everything went well.

Consequence: A possible failure case of a script is not
necessarily a bug!

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Failures and Bugs

Policy 6.1 says:
The package management system looks at the exit status
from these scripts. It is important that they exit with a
non-zero status if there is an error, so that the package
management system can stop its processing... It is also
important, of course, that they exit with a zero status if
everything went well.

Consequence: A possible failure case of a script is not
necessarily a bug!

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Plan

1 Introduction

2 Symbolic Execution of Scripts

3 Symbolic Execution of Maintainer Scripts

4 Demo Time

5 Detected Bugs

6 Conclusions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Infrastructure

Corpus of 13906 packages containing 33320 maintainer scripts
extracted on 2019-03-18 from a Debian mirror

Corpus of 165 additional files which are included by
maintainer scripts

Using the Contents file to simulate dpkg -L

Running for 20 minutes on a 80 cores Intel(R) Xeon(R) CPU
at 2.20GHz.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Infrastructure

Corpus of 13906 packages containing 33320 maintainer scripts
extracted on 2019-03-18 from a Debian mirror

Corpus of 165 additional files which are included by
maintainer scripts

Using the Contents file to simulate dpkg -L

Running for 20 minutes on a 80 cores Intel(R) Xeon(R) CPU
at 2.20GHz.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Infrastructure

Corpus of 13906 packages containing 33320 maintainer scripts
extracted on 2019-03-18 from a Debian mirror

Corpus of 165 additional files which are included by
maintainer scripts

Using the Contents file to simulate dpkg -L

Running for 20 minutes on a 80 cores Intel(R) Xeon(R) CPU
at 2.20GHz.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Infrastructure

Corpus of 13906 packages containing 33320 maintainer scripts
extracted on 2019-03-18 from a Debian mirror

Corpus of 165 additional files which are included by
maintainer scripts

Using the Contents file to simulate dpkg -L

Running for 20 minutes on a 80 cores Intel(R) Xeon(R) CPU
at 2.20GHz.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Plan

1 Introduction

2 Symbolic Execution of Scripts

3 Symbolic Execution of Maintainer Scripts

4 Demo Time

5 Detected Bugs

6 Conclusions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

sgml-base preinst

Script snippet:

if [! -d /var/lib/sgml -base]

then

mkdir /var/lib/sgml -base 2>/dev/null

fi

Problem: If /var/lib/sgml-base exists and is not a directory
this fails silently

We have asked on the mailing list for confirmation that this is
a bug.

https://bugs.debian.org/929706

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/929706

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

sgml-base preinst

Script snippet:

if [! -d /var/lib/sgml -base]

then

mkdir /var/lib/sgml -base 2>/dev/null

fi

Problem: If /var/lib/sgml-base exists and is not a directory
this fails silently

We have asked on the mailing list for confirmation that this is
a bug.

https://bugs.debian.org/929706

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/929706

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

sgml-base preinst

Script snippet:

if [! -d /var/lib/sgml -base]

then

mkdir /var/lib/sgml -base 2>/dev/null

fi

Problem: If /var/lib/sgml-base exists and is not a directory
this fails silently

We have asked on the mailing list for confirmation that this is
a bug.

https://bugs.debian.org/929706

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/929706

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

sgml-base preinst

Script snippet:

if [! -d /var/lib/sgml -base]

then

mkdir /var/lib/sgml -base 2>/dev/null

fi

Problem: If /var/lib/sgml-base exists and is not a directory
this fails silently

We have asked on the mailing list for confirmation that this is
a bug.

https://bugs.debian.org/929706

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/929706

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

armagetronad-dedicated postrm

Script snippet:

if ["$1" = "purge"]; then

rm -r /var/games/armagetronad

rmdir --ignore -fail -on -non -empty /var/games

fi

Will fail if /var/games/armagedtronad does not exist.

Do we have to account for this case?

Policy, section 6.2: Maintainer scripts have to be idempotent.

Note that if a postrm purge succeeds the package is gone
completely.

We still think this is a bug since the script may fail later.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

armagetronad-dedicated postrm

Script snippet:

if ["$1" = "purge"]; then

rm -r /var/games/armagetronad

rmdir --ignore -fail -on -non -empty /var/games

fi

Will fail if /var/games/armagedtronad does not exist.

Do we have to account for this case?

Policy, section 6.2: Maintainer scripts have to be idempotent.

Note that if a postrm purge succeeds the package is gone
completely.

We still think this is a bug since the script may fail later.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

armagetronad-dedicated postrm

Script snippet:

if ["$1" = "purge"]; then

rm -r /var/games/armagetronad

rmdir --ignore -fail -on -non -empty /var/games

fi

Will fail if /var/games/armagedtronad does not exist.

Do we have to account for this case?

Policy, section 6.2: Maintainer scripts have to be idempotent.

Note that if a postrm purge succeeds the package is gone
completely.

We still think this is a bug since the script may fail later.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

armagetronad-dedicated postrm

Script snippet:

if ["$1" = "purge"]; then

rm -r /var/games/armagetronad

rmdir --ignore -fail -on -non -empty /var/games

fi

Will fail if /var/games/armagedtronad does not exist.

Do we have to account for this case?

Policy, section 6.2: Maintainer scripts have to be idempotent.

Note that if a postrm purge succeeds the package is gone
completely.

We still think this is a bug since the script may fail later.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

armagetronad-dedicated postrm

Script snippet:

if ["$1" = "purge"]; then

rm -r /var/games/armagetronad

rmdir --ignore -fail -on -non -empty /var/games

fi

Will fail if /var/games/armagedtronad does not exist.

Do we have to account for this case?

Policy, section 6.2: Maintainer scripts have to be idempotent.

Note that if a postrm purge succeeds the package is gone
completely.

We still think this is a bug since the script may fail later.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

armagetronad-dedicated postrm

Script snippet:

if ["$1" = "purge"]; then

rm -r /var/games/armagetronad

rmdir --ignore -fail -on -non -empty /var/games

fi

Will fail if /var/games/armagedtronad does not exist.

Do we have to account for this case?

Policy, section 6.2: Maintainer scripts have to be idempotent.

Note that if a postrm purge succeeds the package is gone
completely.

We still think this is a bug since the script may fail later.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Idempotency

Debian policy (section 6.2) requires maintainer scripts to be
idempotent.

Mathematically, i is idempotent when

i ◦ i = i

The sense in Debian is much larger:
If the first call failed, or aborted half way through for some
reason, the second call should merely do the things that
were left undone the first time, if any, and exit with a
success status if everything is OK.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Idempotency

Debian policy (section 6.2) requires maintainer scripts to be
idempotent.

Mathematically, i is idempotent when

i ◦ i = i

The sense in Debian is much larger:
If the first call failed, or aborted half way through for some
reason, the second call should merely do the things that
were left undone the first time, if any, and exit with a
success status if everything is OK.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Idempotency

Debian policy (section 6.2) requires maintainer scripts to be
idempotent.

Mathematically, i is idempotent when

i ◦ i = i

The sense in Debian is much larger:
If the first call failed, or aborted half way through for some
reason, the second call should merely do the things that
were left undone the first time, if any, and exit with a
success status if everything is OK.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Idempotency

Debian policy (section 6.2) requires maintainer scripts to be
idempotent.

Mathematically, i is idempotent when

i ◦ i = i

The sense in Debian is much larger:
If the first call failed, or aborted half way through for some
reason, the second call should merely do the things that
were left undone the first time, if any, and exit with a
success status if everything is OK.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

courier-filter-perl postrm

Script snippet:

case "$1" in

purge)

rm /etc/courier/filters/courier -filter -perl.conf

;;

esac

Will fail when .../courier-filter-perl.conf does not exist:
script not idempotent.

However, this is at the end of script, so when it succeeds and
removes the file the package is gone, so this seems purely
formal.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

courier-filter-perl postrm

Script snippet:

case "$1" in

purge)

rm /etc/courier/filters/courier -filter -perl.conf

;;

esac

Will fail when .../courier-filter-perl.conf does not exist:
script not idempotent.

However, this is at the end of script, so when it succeeds and
removes the file the package is gone, so this seems purely
formal.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

courier-filter-perl postrm

Script snippet:

case "$1" in

purge)

rm /etc/courier/filters/courier -filter -perl.conf

;;

esac

Will fail when .../courier-filter-perl.conf does not exist:
script not idempotent.

However, this is at the end of script, so when it succeeds and
removes the file the package is gone, so this seems purely
formal.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

oz postrm

Script snippet:

FILE="/etc/oz/id_rsa -icicle -gen"

case "$1" in

purge)

if [-f $FILE]; then

rm $FILE $FILE.pub

fi

;;

esac

Fails if $FILE exists but $FILE.pub does not.

In that case, a second invocation of postrm purge will succeed!

Even if it is not against idempotency, this behavior is at least
strange and annoying.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

oz postrm

Script snippet:

FILE="/etc/oz/id_rsa -icicle -gen"

case "$1" in

purge)

if [-f $FILE]; then

rm $FILE $FILE.pub

fi

;;

esac

Fails if $FILE exists but $FILE.pub does not.

In that case, a second invocation of postrm purge will succeed!

Even if it is not against idempotency, this behavior is at least
strange and annoying.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

oz postrm

Script snippet:

FILE="/etc/oz/id_rsa -icicle -gen"

case "$1" in

purge)

if [-f $FILE]; then

rm $FILE $FILE.pub

fi

;;

esac

Fails if $FILE exists but $FILE.pub does not.

In that case, a second invocation of postrm purge will succeed!

Even if it is not against idempotency, this behavior is at least
strange and annoying.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

oz postrm

Script snippet:

FILE="/etc/oz/id_rsa -icicle -gen"

case "$1" in

purge)

if [-f $FILE]; then

rm $FILE $FILE.pub

fi

;;

esac

Fails if $FILE exists but $FILE.pub does not.

In that case, a second invocation of postrm purge will succeed!

Even if it is not against idempotency, this behavior is at least
strange and annoying.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Bugs found by Colis

Listing: https://bugs.debian.org/cgi-bin/pkgreport.

cgi?tag=colis-shparser;users=treinen@debian.org

148 bugs filed so far, 90 of which are solved.

So far a great majority are on a trivial level (like missing
set -e), or on the level of syntactic structure (requires
morbig, hence is not trivial).

How did we find the last four bugs:

The first two from bad package states detected by our tool,
then investigation by hand.
The last two where found by running our tool on a dedicated
scenario for testing a subcase of idempotency.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Bugs found by Colis

Listing: https://bugs.debian.org/cgi-bin/pkgreport.

cgi?tag=colis-shparser;users=treinen@debian.org

148 bugs filed so far, 90 of which are solved.

So far a great majority are on a trivial level (like missing
set -e), or on the level of syntactic structure (requires
morbig, hence is not trivial).

How did we find the last four bugs:

The first two from bad package states detected by our tool,
then investigation by hand.
The last two where found by running our tool on a dedicated
scenario for testing a subcase of idempotency.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Bugs found by Colis

Listing: https://bugs.debian.org/cgi-bin/pkgreport.

cgi?tag=colis-shparser;users=treinen@debian.org

148 bugs filed so far, 90 of which are solved.

So far a great majority are on a trivial level (like missing
set -e), or on the level of syntactic structure (requires
morbig, hence is not trivial).

How did we find the last four bugs:

The first two from bad package states detected by our tool,
then investigation by hand.
The last two where found by running our tool on a dedicated
scenario for testing a subcase of idempotency.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Bugs found by Colis

Listing: https://bugs.debian.org/cgi-bin/pkgreport.

cgi?tag=colis-shparser;users=treinen@debian.org

148 bugs filed so far, 90 of which are solved.

So far a great majority are on a trivial level (like missing
set -e), or on the level of syntactic structure (requires
morbig, hence is not trivial).

How did we find the last four bugs:

The first two from bad package states detected by our tool,
then investigation by hand.
The last two where found by running our tool on a dedicated
scenario for testing a subcase of idempotency.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Bugs found by Colis

Listing: https://bugs.debian.org/cgi-bin/pkgreport.

cgi?tag=colis-shparser;users=treinen@debian.org

148 bugs filed so far, 90 of which are solved.

So far a great majority are on a trivial level (like missing
set -e), or on the level of syntactic structure (requires
morbig, hence is not trivial).

How did we find the last four bugs:

The first two from bad package states detected by our tool,
then investigation by hand.
The last two where found by running our tool on a dedicated
scenario for testing a subcase of idempotency.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Bugs found by Colis

Listing: https://bugs.debian.org/cgi-bin/pkgreport.

cgi?tag=colis-shparser;users=treinen@debian.org

148 bugs filed so far, 90 of which are solved.

So far a great majority are on a trivial level (like missing
set -e), or on the level of syntactic structure (requires
morbig, hence is not trivial).

How did we find the last four bugs:

The first two from bad package states detected by our tool,
then investigation by hand.
The last two where found by running our tool on a dedicated
scenario for testing a subcase of idempotency.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Plan

1 Introduction

2 Symbolic Execution of Scripts

3 Symbolic Execution of Maintainer Scripts

4 Demo Time

5 Detected Bugs

6 Conclusions

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Ongoing Work

Include simulation of the unpack phase.

Increase the number of script we can handle, by modeling
more commands.

Being more precise about idempotency: checking equivalence
of the executing a script once or twice.

This uses our result on decidability of the logic.

Investigate other properties, like commutation of scripts.

Using tree transducers to represent the semantics of scripts.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Ongoing Work

Include simulation of the unpack phase.

Increase the number of script we can handle, by modeling
more commands.

Being more precise about idempotency: checking equivalence
of the executing a script once or twice.

This uses our result on decidability of the logic.

Investigate other properties, like commutation of scripts.

Using tree transducers to represent the semantics of scripts.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Ongoing Work

Include simulation of the unpack phase.

Increase the number of script we can handle, by modeling
more commands.

Being more precise about idempotency: checking equivalence
of the executing a script once or twice.

This uses our result on decidability of the logic.

Investigate other properties, like commutation of scripts.

Using tree transducers to represent the semantics of scripts.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Ongoing Work

Include simulation of the unpack phase.

Increase the number of script we can handle, by modeling
more commands.

Being more precise about idempotency: checking equivalence
of the executing a script once or twice.

This uses our result on decidability of the logic.

Investigate other properties, like commutation of scripts.

Using tree transducers to represent the semantics of scripts.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Ongoing Work

Include simulation of the unpack phase.

Increase the number of script we can handle, by modeling
more commands.

Being more precise about idempotency: checking equivalence
of the executing a script once or twice.

This uses our result on decidability of the logic.

Investigate other properties, like commutation of scripts.

Using tree transducers to represent the semantics of scripts.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Ongoing Work

Include simulation of the unpack phase.

Increase the number of script we can handle, by modeling
more commands.

Being more precise about idempotency: checking equivalence
of the executing a script once or twice.

This uses our result on decidability of the logic.

Investigate other properties, like commutation of scripts.

Using tree transducers to represent the semantics of scripts.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Thank you

Joint work with the people from the Colis project.

Project ANR-15-CE25-0001 funded by Agence Nationale de
Recherche.

October 2015 – September 2020

http://colis.irif.fr/

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

http://colis.irif.fr/

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Academic Papers

NJ, CM, RT: A Formally Verified Interpreter for a Shell-like
Programming Language, VSTTE 2017,
https://hal.archives-ouvertes.fr/hal-01534747

YRG, NJ, RT: Morbig: A Static Parser for POSIX Shell, SLE
2018,
https://hal.archives-ouvertes.fr/hal-01890044

NJ, RT: Deciding the First-Order Theory of an Algebra of
Feature Trees with Updates, IJCAR 2018,
https://hal.archives-ouvertes.fr/hal-01807474

BB, CM: Ghost Code in Action: Automated Verification of a
Symbolic Interpreter, VSTTE 2019.

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://hal.archives-ouvertes.fr/hal-01534747
https://hal.archives-ouvertes.fr/hal-01890044
https://hal.archives-ouvertes.fr/hal-01807474

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

dpkg-maintscript-helper

This is a utility that may be used by maintainer scripts

Script snippet:

find "$PATHNAME" -mindepth 1 -print0 | \

xargs -0 -i% mv -f "%" "$ABS_SYMLINK_TARGET/"

Fails when "$PATHNAME" contains subdirectories

Solution: add option "-maxdepth 1" to find

https://bugs.debian.org/922799 (our proposed fix was
accepted)

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/922799

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

dpkg-maintscript-helper

This is a utility that may be used by maintainer scripts

Script snippet:

find "$PATHNAME" -mindepth 1 -print0 | \

xargs -0 -i% mv -f "%" "$ABS_SYMLINK_TARGET/"

Fails when "$PATHNAME" contains subdirectories

Solution: add option "-maxdepth 1" to find

https://bugs.debian.org/922799 (our proposed fix was
accepted)

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/922799

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

dpkg-maintscript-helper

This is a utility that may be used by maintainer scripts

Script snippet:

find "$PATHNAME" -mindepth 1 -print0 | \

xargs -0 -i% mv -f "%" "$ABS_SYMLINK_TARGET/"

Fails when "$PATHNAME" contains subdirectories

Solution: add option "-maxdepth 1" to find

https://bugs.debian.org/922799 (our proposed fix was
accepted)

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/922799

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

dpkg-maintscript-helper

This is a utility that may be used by maintainer scripts

Script snippet:

find "$PATHNAME" -mindepth 1 -print0 | \

xargs -0 -i% mv -f "%" "$ABS_SYMLINK_TARGET/"

Fails when "$PATHNAME" contains subdirectories

Solution: add option "-maxdepth 1" to find

https://bugs.debian.org/922799 (our proposed fix was
accepted)

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/922799

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

dpkg-maintscript-helper

This is a utility that may be used by maintainer scripts

Script snippet:

find "$PATHNAME" -mindepth 1 -print0 | \

xargs -0 -i% mv -f "%" "$ABS_SYMLINK_TARGET/"

Fails when "$PATHNAME" contains subdirectories

Solution: add option "-maxdepth 1" to find

https://bugs.debian.org/922799 (our proposed fix was
accepted)

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

https://bugs.debian.org/922799

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Scenario: fresh installation

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Scenario: installation of previously removed package

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Scenario: upgrade of an installed package

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Scenario: removal of an installed package

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Scenario: purge of a removed package

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

Introduction Symbolic Execution of Scripts Symbolic Execution of Maintainer Scripts Demo Time Detected Bugs Conclusions Appendix

Scenario: purge of an installed package

Nicolas Jeannerod, Ralf Treinen IRIF, Université de Paris

Symbolic Execution of Maintainer Scripts

