
Symbolic Execution of Debian Packages

Nicolas Jeannerod
nicolas.jeannerod@irif.fr

joint work with Benedikt Becker, Claude Marché
Yann Régis-Gianas, Mihaela Sighireanu, Ralf Treinen

IRIF, Université de Paris

September 9, 2019

13th Alpine Verification Meeting

1

Introduction

> CoLiS project: Correctness of Linux Scripts

> Goal: applying formal methods to the quality
assessment of Debian Packages.

> Debian: operating system.

> Packages: way to provide (install, update, remove)
software.

> Goal (reformulated): making sure that
installing/updating/removing software does not:
> make other softwares unusable,
> make the whole computer unusable,
> remove your personnal files,
> etc.

1

Introduction

> CoLiS project: Correctness of Linux Scripts

> Goal: applying formal methods to the quality
assessment of Debian Packages.

> Debian: operating system.

> Packages: way to provide (install, update, remove)
software.

> Goal (reformulated): making sure that
installing/updating/removing software does not:
> make other softwares unusable,
> make the whole computer unusable,
> remove your personnal files,
> etc.

1

Introduction

> CoLiS project: Correctness of Linux Scripts

> Goal: applying formal methods to the quality
assessment of Debian Packages.

> Debian: operating system.

> Packages: way to provide (install, update, remove)
software.

> Goal (reformulated): making sure that
installing/updating/removing software does not:
> make other softwares unusable,
> make the whole computer unusable,
> remove your personnal files,
> etc.

1

Introduction

> CoLiS project: Correctness of Linux Scripts

> Goal: applying formal methods to the quality
assessment of Debian Packages.

> Debian: operating system.

> Packages: way to provide (install, update, remove)
software.

> Goal (reformulated): making sure that
installing/updating/removing software does not:
> make other softwares unusable,
> make the whole computer unusable,
> remove your personnal files,
> etc.

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.

> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.

> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.

> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.

> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.

> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.

> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.

> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.

> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous

. Formal methods?

2

Installing a Software on Debian

1. Download the package.

2. Execute a pre-installation script.
> This is a POSIX shell script ran as administrator.

3. Unpack static archive.

4. Execute a post-installation script.
> This is a POSIX shell script ran as administrator.

POSIX shell:

> scripting language

> legacy (born in 1971)

Administrator:

> can do anything
on the system

Complicated and dangerous. Formal methods?

3

Our Tools: An Overview

CoLiS

Debian
Package

Report

3

Our Tools: An Overview

CoLiS

Debian
Package

Report

Symbolic
Engine

Shell script

Specification
of the script

3

Our Tools: An Overview

CoLiS

Debian
Package

Report

Symbolic
Engine

Specification
of the script

Morbig, Morsmall
and ColisFromShell

She
ll

scr
ipt Colis

inter.
language

3

Our Tools: An Overview

CoLiS

Debian
Package

Report

Symbolic
Engine

Specification
of the script

Morbig, Morsmall
and ColisFromShell

She
ll

scr
ipt Colis

inter.
language

Specifications
of commands

3

Our Tools: An Overview

CoLiS

Debian
Package

Report

Symbolic
Engine

Specification
of the script

Morbig, Morsmall
and ColisFromShell

She
ll

scr
ipt Colis

inter.
language

Specifications
of commands

SAT solver for
specifications

SAT?

3

Our Tools: An Overview

CoLiS

Debian
Package

Report

Symbolic
Engine

Specification
of the script

Morbig, Morsmall
and ColisFromShell

She
ll

scr
ipt Colis

inter.
language

Specifications
of commands

SAT solver for
specifications

SAT?

 Régis-Gianas,
J & Treinen
SLE 2018


 J, Marché

& Treinen
VSTTE 2017



Specifications,
Feature Trees & Constraints

4

Feature Trees

f g h f g h

f g

> Unranked unordered trees;

> Good models for the UNIX filesystem;

> Shell scripts can be seen as programs that modify
such trees;

> Constraints will express relations between such
trees.

4

Feature Trees

f g h f g h

f g

> Unranked unordered trees;

> Good models for the UNIX filesystem;

> Shell scripts can be seen as programs that modify
such trees;

> Constraints will express relations between such
trees.

4

Feature Trees

f g h f g h

f g

> Unranked unordered trees;

> Good models for the UNIX filesystem;

> Shell scripts can be seen as programs that modify
such trees;

> Constraints will express relations between such
trees.

4

Feature Trees

f g h f g h

f g

> Unranked unordered trees;

> Good models for the UNIX filesystem;

> Shell scripts can be seen as programs that modify
such trees;

> Constraints will express relations between such
trees.

5

Constraints On Feature Trees

Atom (Informal) Semantics

x [f]y From x’s tree, through f , we go to y’s tree

x [f]↑ In x’s tree, there is no f

Ax The root of x’s tree has decoration A

x [F] x’s tree can also use features in F

x ∼F y x and y’s trees are similar except in F

5

Constraints On Feature Trees

Atom (Informal) Semantics

x [f]y From x’s tree, through f , we go to y’s tree

x [f]↑ In x’s tree, there is no f

Ax The root of x’s tree has decoration A

x [F] x’s tree can also use features in F

x ∼F y x and y’s trees are similar except in F


Aït-Kaci
Podelski
& Smolka

1992



5

Constraints On Feature Trees

Atom (Informal) Semantics

x [f]y From x’s tree, through f , we go to y’s tree

x [f]↑ In x’s tree, there is no f

Ax The root of x’s tree has decoration A

x [F] x’s tree can also use features in F

x ∼F y x and y’s trees are similar except in F


Aït-Kaci
Podelski
& Smolka

1992


 Smolka
& Treinen

1994



5

Constraints On Feature Trees

Atom (Informal) Semantics

x [f]y From x’s tree, through f , we go to y’s tree

x [f]↑ In x’s tree, there is no f

Ax The root of x’s tree has decoration A

x [F] x’s tree can also use features in F

x ∼F y x and y’s trees are similar except in F


Aït-Kaci
Podelski
& Smolka

1992


 Smolka
& Treinen

1994



6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

r

∃x

q

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

r

∃x
(dir)

q

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

r

∃x
(dir)

q

⊥
f

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

r

∃x
(dir)

q

⊥
f

r ′

∃x ′
q

∼{q}

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

r

∃x
(dir)

q

⊥
f

r ′

∃x ′
q

∼{q}

∼{f }

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

r

∃x
(dir)

q

⊥
f

r ′

∃x ′
(dir)

q

∼{q}

∼{f }

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

r

∃x
(dir)

q

⊥
f

r ′

∃x ′
(dir)

q

∼{q}

∼{f }

∃y ′
f

6

Example Specification: mkdir q/f

∃x , x ′, y ′·

resolve(r , cwd , q, x) ∧ dir(x) ∧ x [f]↑

∧ similar(r , r ′, cwd , q, x , x ′) ∧ x ∼{f } x
′

∧ dir(x ′) ∧ x ′[f]y ′ ∧ dir(y ′) ∧ y ′[∅]

Success

∃y · resolve(r , cwd , q/f , y) ∧ r
.
= r ′

noresolve(r , cwd , q) ∧ r
.
= r ′

∃x ·resolve(r , cwd , q, x)∧¬dir(x)∧r .
= r ′

Error

r

∃x
(dir)

q

⊥
f

r ′

∃x ′
(dir)

q

∼{q}

∼{f }

∃y ′
(empty dir)

f

Symbolic Execution

7

Symbolic Execution

if [-e foo]; then
rm foo

fi

In progress

r

Case 1
Success

r = r ′

⊥

foo

In progress

r

x

foo

Case 2
Success

r

x (¬dir)

foo

r ′

⊥

foo

∼foo

Case 3
Error

r = r ′

x (dir)

foo

7

Symbolic Execution

if [-e foo]; then
rm foo

fi

In progress

r

Case 1
Success

r = r ′

⊥

foo

In progress

r

x

foo

Case 2
Success

r

x (¬dir)

foo

r ′

⊥

foo

∼foo

Case 3
Error

r = r ′

x (dir)

foo

7

Symbolic Execution

if [-e foo]; then
rm foo

fi

In progress

r

Case 1
Success

r = r ′

⊥

foo

In progress

r

x

foo

Case 2
Success

r

x (¬dir)

foo

r ′

⊥

foo

∼foo

Case 3
Error

r = r ′

x (dir)

foo

7

Symbolic Execution

if [-e foo]; then
rm foo

fi

In progress

r

Case 1
Success

r = r ′

⊥

foo

In progress

r

x

foo

Case 2
Success

r

x (¬dir)

foo

r ′

⊥

foo

∼foo

Case 3
Error

r = r ′

x (dir)

foo

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2[{foo}]

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

8

Chaining Specifications

mkdir /usr/lib ; mkdir /usr/lib/foo

r1

x1

⊥

usr

lib

r ′1

x ′1

y ′1[∅]

usr

lib

∼{usr}

∼{lib}

r2

x2

y2

⊥

usr

lib

foo

r ′2

x ′2

y ′2[{foo}]

z ′2[∅]

usr

lib

foo

∼{usr}

∼{lib}

∼{foo}

r12∼{usr} ∼{usr}

usr usr

x12

usr

∼{lib} ∼{lib}

lib lib

y12[∅]

lib

∼{foo}

∼{usr}

∼{lib}

∼{usr}

∼{lib}

[J & Treinen, IJCAR 2018]

Demo

9

Package Report

10

Installation Scenario

11

An Other Scenario

12

An Execution Case

13

The postrm Script

Conclusion

14

Conclusion

> Demo report accessible from my website:
http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
> Webpage: http://colis.irif.fr/
> Tools: https://github.com/colis-anr/

> So far, 148 bugs found and reported to Debian;

> Several talks at DebConf;
The Debian maintainers are very enthusiastic!

> Future work: support more packages
> Support more shell constructs,
> Add more command specifications,
> Improve the constraint solver;

> Thank you for your attention!

http://nicolas.jeannerod.fr/
http://colis.irif.fr/
https://github.com/colis-anr/

14

Conclusion

> Demo report accessible from my website:
http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
> Webpage: http://colis.irif.fr/
> Tools: https://github.com/colis-anr/

> So far, 148 bugs found and reported to Debian;

> Several talks at DebConf;
The Debian maintainers are very enthusiastic!

> Future work: support more packages
> Support more shell constructs,
> Add more command specifications,
> Improve the constraint solver;

> Thank you for your attention!

http://nicolas.jeannerod.fr/
http://colis.irif.fr/
https://github.com/colis-anr/

14

Conclusion

> Demo report accessible from my website:
http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
> Webpage: http://colis.irif.fr/
> Tools: https://github.com/colis-anr/

> So far, 148 bugs found and reported to Debian;

> Several talks at DebConf;
The Debian maintainers are very enthusiastic!

> Future work: support more packages
> Support more shell constructs,
> Add more command specifications,
> Improve the constraint solver;

> Thank you for your attention!

http://nicolas.jeannerod.fr/
http://colis.irif.fr/
https://github.com/colis-anr/

14

Conclusion

> Demo report accessible from my website:
http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
> Webpage: http://colis.irif.fr/
> Tools: https://github.com/colis-anr/

> So far, 148 bugs found and reported to Debian;

> Several talks at DebConf;
The Debian maintainers are very enthusiastic!

> Future work: support more packages
> Support more shell constructs,
> Add more command specifications,
> Improve the constraint solver;

> Thank you for your attention!

http://nicolas.jeannerod.fr/
http://colis.irif.fr/
https://github.com/colis-anr/

14

Conclusion

> Demo report accessible from my website:
http://nicolas.jeannerod.fr/

> CoLiS project: Correctness of Linux Script.
> Webpage: http://colis.irif.fr/
> Tools: https://github.com/colis-anr/

> So far, 148 bugs found and reported to Debian;

> Several talks at DebConf;
The Debian maintainers are very enthusiastic!

> Future work: support more packages
> Support more shell constructs,
> Add more command specifications,
> Improve the constraint solver;

> Thank you for your attention!

http://nicolas.jeannerod.fr/
http://colis.irif.fr/
https://github.com/colis-anr/

	Specifications, Feature Trees & Constraints
	Symbolic Execution
	Demo
	Conclusion

